
Gates-on-the-Fly fixes
Logic Equivalence Check Failures
Logical Equivalence Checking software like Cadence’s Conformal and Synopsys’ Formality create detailed

reports of differences and errors, but it is often difficult to find, view, and fix the logic cones involved

with the errors. SynaptiCAD’s Gates-on-the-Fly (GOF) can be used to easily find and view these specific

logic cones on a schematic so that you can visualize just the paths you need to see without unnecessary

clutter. GOF also simplifies mapping from RTL level constructs to their gate-level equivalents, so that you

can pinpoint the locations where changes need to be made. And GOF's ECO mode supports both

graphical and script-based editing features for tracking ECO changes. Metal-only ECO operations are also

supported with an automatic spare gates flow.

The following whitepaper shows how to use GOF to track down Logic Equivalence Check (LEC) failures

identified by Cadence’s Conformal LEC tool. The design example discussed in this white paper is from a

real world debugging session by a GOF customer.

Conformal Logic Equivalence Check Results:
After running the design through Conformal, the results showed 661 non-equivalent points. Primary

analysis showed each non-equivalent point had the same fanin endpoints in both the revised and the

golden netlist, so the failure must be inside the logic cone.

Compared points PO DFF DLAT BBOX Total

Equivalent 553 42253 98 62 42966

Non-equivalent 0 646 0 15 661

Conformal LEC GUI debug tool gave some useful information, but the schematic displayed too many

gates and connections. The culprit gates were hiding somewhere, but it was too difficult to find them in

this full-blown schematic.

LEC diagnosis
LEC diagnosis result gave some clues in the potential error candidates, but it was not clear how to use

them:

Diagnosis for Non-equivalent key points:
 (G) + 1703 DFF /core/crossbar/cfrg_xhncc_0
 (R) + 10964 DFF /core/crossbar/cfrg_xhncc_0

Diagnosis points: [CLOCK]
 (G) + 736683 AND /core/crossbar/FE_RC_10964_0
 (R) + 2279312 BUF /core/crossbar/FE_OFC2712_xt_xhncc_txd_37_

Non-equivalent signal and its error candidates

 ID (R) Type Likelihood Name
--
523002 DFF /core/crossbar/cfrg_xhncc_0
------- Candidates ---
1: 113766 BUF_X16M_RVT 1.00 /core/crossbar/FE_OFC75663_scanmode_from_pad
2: 113767 BUF_X3M_RVT 1.00 /core/crossbar/FE_OFC341157_scanmode_from_pad
3: 114588 BUF_X13M_RVT 1.00 /core/crossbar/FE_OFC34939_xt_sel_2_
4: 114601 NOR2XB_X0P7M_RVT 1.00 /core/crossbar/u_mux_p214748365A28
5: 114610 NOR2B_X3M_RVT 1.00 /core/crossbar/u_mux_p214748365A29
6: 114825 INV_X13M_RVT 1.00 /core/crossbar/FE_OFC11881_jtag_mode
7: 117468 INV_X2P5M_RVT 1.00 /core/crossbar/u_gpio_p214748365A20030
8: 114592 BUF_X3M_RVT 0.99 /core/crossbar/FE_OFC339934_scanmode_from_pad
9: 114593 INV_X13M_RVT 0.97 /core/crossbar/FE_OFC75793_scanmode_from_pad

Note: two instances have been marked in red. These will be the two tracing points for Gates On the Fly.

The GOF way
To track down the offending gates we loaded both the revised and golden netlists into GOF using the

following command:

gof –lib hvt.lib –lib rvt.lib –Top_1 golden_netlist.v revised_netlist.v

 -lib option loads library files

 -Top_1 option specifies the golden netlist to load. Additional netlists can be loaded by “-Top_2”

and so on.

 The revised netlist filename has no option before it.

GOF first displays the net list code in a text viewing window called GofViewer. The left hand side has the

two netlists’ hierarchies that were loaded into GOF. The right hand side lists the modules of the selected

netlist.

With GofViewer, the design can be quickly explored by double clicking on the tree and viewing the code.

The right click context menus and double clicking on objects lets you find related information such as

the drivers and loads of a particular net. But since we already knew some gate instance names from the

LEC report, we just pressed the CTRL-G key combination to open a search dialog and typed in the

instances to show on the schematic. We loaded two gates onto the schematic:

core/crossbar/cfrg_xhncc_0 and core/crossbar/FE_OFC34939_xt_sel_2_.

Draw Schematic between two parts
The GofTrace interface is optimized to quickly display only the portion of logic that you are interested in

by focusing on tracing just the fan in/out of a particular path. If we were just investigating one particular

path, we could expand the schematic by middle mouse clicking and dragging on a port to see more of

the schematic. In this case, we wanted see the entire path between the two parts and this can be done

using a context menu command. As shown below, we selected the two gate instances and then right

clicked and selected Find Circuit between two points from the context menu. This opened a dialog

where we chose to show the circuit on the schematic and then executed the function.

The schematic display is fully customizable, so you can control what types of objects are displayed, how

the logic is drawn, and the colors for different objects. Comments can also be added to a gate or to the

schematic sheet. The schematic can be zoomed in/out to view the whole circuit or a particular area. Any

cell on the schematic can be moved around to a new proper position for easy viewing by left clicking and

dragging. Another useful tracing feature during LEC analysis is Show until non-buffer on Schematic. This

renders all driving buffers/inverters until a non-buffer or non-inverter cell is encountered on the

selected path.

Create same path for golden netlist
Next we want to add the same path from the golden netlist to the schematic viewer window so that we

can visually compare the differences. We can do this either from the GOFViewer or from the GofTrace

windows. In GofViewer, we would select the golden netlist tree and use Ctrl-g to load instances from

that netlist like we did in the previous section. In GofTrace, we just select an instance, right click, and

choose Load peer gate in other tree from the context menu. This opens a dialog where you can choose

the golden netlist by selecting ‘Top_1’ for the other tree.

This will load one gate from the golden netlist. More gates can be added by mouse middle button

clicking on the gate’s input/output pins. In a few clicks, we have the two circuits displayed side-by-side.

Since all the non-buffer/inverter paths are the same, the mismatch must be in the buffer/inverter paths.

Analyze segment by segment
Select the first group of buffers/inverters driving the sink by pressing left mouse button near the top of

the chain and dragging it to the end of the chain. When all the cells in the group are selected, choose the

Schematic >List Selected Gates Types menu. This opens the List types dialog which shows that there is

an even number of inverters which means it matches the path in the golden netlist.

Catch the issue
Using the same analysis technique on the second set of buffers, we find that the inverter count is 7,

which doesn’t match golden path! The revised netlist from Physical Design Team has gone through

several ECO scripts, so some ECO operations must have swapped the gate type.

To get a list of the 7 problematic inverters to send to the Physical Design Team, we used the Schematic

>List Selected Instances Definitions menu, to open a text dialog with the information.

Experimental fix analysis and GOF ECO
GOF can also be used to perform the ECO and fix the error. Since the inverters all have only one fanout,

we can swap in one inverter for a buffer to fix the logic error. Click the ECO button in GofTrace window

to open the GofECO Preferences dialog. This lets you control the type of ECO, the prefix for new gates

added to the design by the ECO, and some other settings.

To perform the ECO, select one of the seven inverters, then press the Replace Gates with different type

button. This will open a series of dialogs that will let you pick the new gate and control the connections

of the gate. We picked BUF_X16M and used the default connections.

When the ECO is performed, the new gates are displayed in a different color, so it is easy to see how the

change affected the original circuit. Press the Save ECO button to save the ECO result to a Verilog netlist,

a SOC Encounter ECO script, a Synopsys TCL format, or other supported format.

After performing the ECO, we would run another round of LEC to see if the ECO netlist has fixed some

failures. The debugging/fixing process normally has multiply iterations.

Script mode ECO
After several iterations, the total failures were down to 92 points and all of them were flip-flop clock

inputs. We decided to use GOF’s script mode ECO to insert an inverter before each clock pin of the flip-

flops. We wrote the ECO script below and we dumped the failing end points to a file named

“non_eq.pnt” which was processed by the ECO script to extract the flip-flop instance names.

1. # File name: insert_invs.pl

2. use strict;

3. undo_eco;

4. open(FIN, "non_eq.pnt");

5. open(FOUT, ">fix_92.for_soc");

6. while(<FIN>){

7. my ($flop) = (m/(\w+_reg(_\d+)?)/); # Get flop instance name

8. print "$flop\n";

9. my @pins = get_pins("-input", "$flop"); # The clock pin can be CKN or CK

10. print "@pins\n";

11. if(grep($_ =~ m/CKN/, @pins)){

12. change_pin("$flop/CKN", "INV_X16M_RVT", "", "-");

13. print FOUT "ecoAddRepeater -term $flop/CKN -cell INV_X16M_RVT\n";

14. }else{

15. change_pin("$flop/CK", "INV_X16M_RVT", "", "-");

16. print FOUT "ecoAddRepeater -term $flop/CK -cell INV_X16M_RVT\n";

17. }

18. }

19. close(FIN);

20. close(FOUT);

21. write_verilog(“insert_92_invs.v”); # Save the ECO result to verilog netlist

In the script file, we used several GOF APIs: undo_eco, get_pins, change_pin, write_verilog. These are

documented in the online help under the GofCall chapter. The script can either be run in a GofCall

window by typing in the script command:

run insert_invs.pl

Or it can be executed from an OS shell by starting GOF with the “-run” option:

gof -lib libs.lib netlists.v -run insert_invs.pl

After running the script, we re-ran the LEC check on the ECO’d netlist “insert_invs.v” against the golden

netlist and found no more mismatches.

Conclusion
GOF’s rich schematic features make it a good choice in debugging complicated equivalence check

failures. The built-in “On the fly” ECO functions decreases turn-around time for large netlist processing.

GOF’s Main features:

 Flexible and partial schematic display makes it easy to isolate only the related path

 Built-in functions like tracing path from point to point and logic cone extraction

 ECO in GUI mode or script mode

 Logic cone replacement for large netlist changes

 Netlist tracing by using exported APIs

 Add annotations to schematics and PDF for easy documentation

 Prime Time report file analysis and timing fix automation

 Placement view for timing path analysis with each segment highlighted with different color

	Conformal Logic Equivalence Check Results:
	LEC diagnosis

	The GOF way
	Draw Schematic between two parts
	Create same path for golden netlist
	Analyze segment by segment
	Catch the issue

	Experimental fix analysis and GOF ECO
	Script mode ECO

	Conclusion

