
89www.ecnmag.com • ECN • November 15, 2002

Interfacing VHDL and Verilog
Designs to C++ Models

Test & Measurement, DAQ

by Donna Mitchell, SynaptiCAD

C++ models add many new capa-
bilities to Verilog and VHDL
simulations including the ability

to use high-level data structures, con-
straints and random data generation.
C++ models are also very useful for

co-simulation of hardware and software. Despite the
advantages of C++ models, they have been relegated to
simulation of large systems
because of the cost associated
with setting up the C++ envi-
ronment. New techniques are
now available to automate the
process so that C++ models can
by used by anybody. Using
graphical code generation tools
and public domain C++
libraries, engineers can set up a
C++ environment and start sim-
ulating in just a few hours.

C++ Communication
with HDL

Communication between
C++ models and HDL simula-
tors is usually achieved through
a programming language inter-
face that allows events and data
to be transferred between the
environments. For Verilog simu-
lators, the Verilog PLI interface is used. For VHDL
simulators, the method varies with each simulator;
however, they work in essentially the same way as the
PLI interface.

Control of a simulation begins in the HDL simula-
tor. The C++ model registers itself with the HDL simu-
lator and asks to be notified when certain events hap-
pen. The HDL simulator runs until a registered event,
and then it stops and hands control over to the C++
model. The C++ model reads signal and data values
from the HDL simulation, per-
forms behavioral actions, writes
results back to the HDL simula-
tion and returns control to the
HDL simulator.

The main challenge using PLI
type interfaces is creating a
method for automating the con-
nection between signals in C++
and HDL models. Often several
thousand lines of PLI-based code
are required to manage the inter-
face between the environments.
This means that the user must
master C++ object-oriented pro-
gramming techniques and
become proficient at building
libraries in order to get things
done efficiently. It is also difficult
to develop a set of classes able to
handle hardware concepts such as
the passage of time, parallelism

and signal driver resolution. Fortunately, C++ modeling
libraries and GUI-based modeling tools can help users
to overcome the most demanding of these challenges.

C++ HDL Libraries
Several open source libraries such as SystemC and

TestBuilder provide a framework for C++ hardware
modeling. SystemC v2.0 provides the modeling con-
structs for both high-level behavioral models, gate level
design and links for mixed C++ and HDL simulation.

TestBuilder is a verification
library that provides transaction-
level modeling features, con-
strained randomization and
automated signal mapping
between C++ signals and HDL
signals.

Working with C++ libraries
provides an advantage in devel-
oping code; however, the initial
learning curve is still significant.
The syntax and library function
calls are different for each
library that is incorporated into
the design. There is often a
framework and recommended
way to structure the design
when using the library. In addi-
tion, users must learn how to set
up the C++ compiler and HDL
environment so that C++ library
code is properly linked with the

simulator. To make matters even more tedious, compil-
ers on different platforms often require different
options (for example, different make files). Graphical
code generation and GUI-based project management
tools address these issues by automatically generating
model code, and they make files that are portable
across platforms and different simulators and compilers.

Automatic Code Generation
GUI-based code generators can completely auto-

mate the mapping code between
C++ signals and HDL signals and
keep these mappings up-to-date as
changes are made to the design
source code. Similarly, these tools
can hide from users C++-specific
details such as syntax requirements
for data structure definitions and
template instantiations.
SynaptiCAD’s TestBencher Pro
tool is one such graphical code
generation and GUI-based project
management tool. TestBencher
generates bus-functional models
for several languages including
SystemC, TestBuilder, Verilog,
VHDL, e and OpenVera. Users
draw language-independent timing
diagrams to describe each bus
transaction graphically, and they
enter information about the rele-
vant data structures including ran-

dom data generation and packing order. The tool gen-
erates a bus-functional model directly from this infor-
mation.

GUI-based project management tools can be used to
handle all of the external compiler and simulator con-
trol necessary to build C++ dynamic libraries, link them
to the HDL simulator, and run the simulation. For
example, TestBencher can launch simulators and com-
pilers automatically, and hand off the generated code
so it is very easy to move from test bench development
to simulation. It can also import the final simulation
results so that they can be viewed graphically. Figure 1
shows a typical modern design flow for C++-based hard-
ware modeling.

C++ Golden Reference Models
In addition to using C++ to develop design models

and test benches, C++ can also be used to develop ref-
erence models that run in parallel with the design
model and provide another type of check for the
design. Golden reference models are high-level
descriptions of a design, and they are used to compare
to the results of an RTL-level model during simulation.
Reference models usually model interaction between
components at the transaction level (for example, read
transaction/write transaction) instead of at the signal
level. When the reference model is created, the apply
calls will call both the diagram transactions and the
equivalent reference model transaction. At the end of
each transaction, the outputs for the MUT and the ref-
erence model are compared and logged to the simula-
tion log file. Since the reference models have the same
structure as the design, automatic code generators such
as TestBencher can generate most of the reference
model directly from the design.

Summary
C++ provides many benefits for modeling behavioral

algorithms including advanced data structures, stan-
dard libraries and embedded software models. New
hardware modeling libraries such as SystemC and
TestBuilder make C++ useable for architectural model-
ing, but they are still difficult to use. Graphical code
generation and GUI-based project management tools
such as TestBencher Pro ease many of the problems
incurred using C++ hardware modeling libraries. By
choosing a combination of these new tools, users can
automate the tedious aspects of model development,
allowing them to focus on the functionality of their
models.

Write in 5270 or www.ecnmag.com/info

Figure 1. C++-Based hardware design flow.

Donna Mitchell is Vice President of Marketing and Co-
Founder of SynaptiCAD Sales, Inc., 520 Prices Fork Rd.,
Blacksburg, VA 24060; (540) 953-3390;
donna@syncad.com; www.syncad.com; www.syncad.com.

EDITORIAL EVALUATION

Write in Number or Reply Online
I found this article:

Very Useful Useful Not Useful
5271 5272 5273

Figure 2. The TestBencher Pro’s sequencer
process controls and monitors the execu-
tion of the timing process.

