PCIl TestBencher Pro Example

© Copyright 1994-2004 SynaptiCAD, Inc.

Table of Contents

O YT Y=/ 2
P T = 0 o | PSPPSR PUPPPPPIN 3
2 A 1 (= o] 3
3. S AV N e 4
ST 1 (= o T 4
e 1] P 5
=V o 1 (T 0 o] {1 5

4.2.Sequencer Process (in Component Madel.).........coovvviiiiiiiiiiiiiineeeeeeieee 5

1.0verview

This example demonstrates how to create PCI masté?@hsdlave bus-functional-
models (BFMs) using TestBencher Pro. These are not t00%plete BFMs that can test
every feature of the PCI protocol. Instead, they atepjagial BFMs to help in the
understanding of TestBencher Pro. Each BFM is modeied asTBP project, which is
then instantiated in another project named PCIl.hpmeSfeatures used in this example
include:

Component Signals & Ports dialog — used to specify portavad and master BFMs.
“Loop” Markers — several of the transaction diagrams.

“Wait Until” Markers — master's transaction diagramd arbiter.btim.

“HDL Code” Markers — slave's transaction diagrams.

State Variables — master's transaction diagrams.

Blocking, Simple Expect Samples — master's and sta@esaction diagrams.
Non-blocking, Simple Expect Samples — master's traogsadiagrams.
User-defined condition Samples — slave's transactionashegr

. “Trigger Sample” Samples — arbiter.btim

10 “Do Delayed Transition” Samples — arbiter.btim

11.Sensitive Edges — slave's transaction diagrams anelr dotan.

©CoNoOR~WNE

This PCI example consists of the following TBP prtgec

1. slave.hpj — represents a PCI slave bus-functional-n{8&a).
2. master.hpj — represents a PCI master BFM.
3. PCl.hpj — instantiates two masters (masterO and mMasted one slave (slave0).

Open PCl.hpj and look at the Project window to sedigm@rchy of projects. The
instantiations are displayed below the top level Compoewel. You can browse the
contents of master.hpj and slave.hpj via the Projéxcaty folder.

2.Master.hpj

The master project contains a two diagrams: write.btwh read.btim. These diagrams
are fairly similar so only the write.btim diagram is eaped here.

The master write diagram is a “Master Transaction” tvimeans when it is applied, it
will run once from beginning to end then stop. This setsirapcessible from the
“Diagram Settings” dialog. This transaction takes tip@@meters: numDataCycles,
$$address and $$be. “numDataCycles” is a user-defined vanalb can be viewed
by clicking the “View Variables” button in the diagramnaow.

2.1.write.btim

1. Assert REQn.

2. Wait for acquisition of the bus using the “WaitForBusAcijois” Wait Until Marker.
Double-click on the marker name to see the “Wait lUntindition.

3. Address Cycle:

a) Assert FRAMERN to indicate start of transaction.

b) Put address on AD using the “$$address” state variablevisapassed in as a
parameter.

c) Drive out “7” on the CBEnN signal to indicate the “writeSnamand.

4. Data Cycle(s): A for loop is used to perform alllof tlata cycles except for the very
last one. Open up the for loop's properties to seét thaips from O to
“numDataCycles-2”, inclusive.

a) Put data on AD using the “writeData” Component Modalidble. The
“writeData” variable is defined in the “Class Libragiand Variables” dialog for the
master project.

b) Drive out byte enable on the CBEn signal using the “$$la¢& siariable that was
passed in as a parameter.

c) Assert IRDYN.

d) Wait for TRDYn to assert, which indicates that $le/e has seen the data and is
ready to continue. This is done using the “WaitForTR[®émple. Double-click
on the Sample's name and then click on the HDL Coderbtd see it's “Code
Generation Properties.” The Multiplier is set to 100icwhndicates that the
sample should wait up to 100 clock cycles for TRDYn to assEull Expect” is
disabled because otherwise it would mean that TRDYn shieussserted for the
entire 100 clock cycles. And finally, “Blocking” is enabliedblock the rest of the
diagram from executing until the sample finishes.

5. Last Data Cycle: this is the same as the otherogates, except that FRAMEn is
released to indicate that the transaction is finishing.

Keep in mind that there are other ways to implemerClaRite transaction. For
instance, all of the data cycles could have been dahewhe for loop, instead of
putting the last data cycle afterwards. In that cgse would have to use a conditional
expression to release FRAMERN for the last data cyabe.ekample, the state for
FRAMERN inside the for loop would look like:

(cycle == numDataCycles) : Z: 0

3.Slave.hpj

The slave project contains two diagrams: write.btim raad.btim. As in the master
project, these diagrams are closely related and onkyriite btim will be explained here.

The slave read diagram is a “Slave Transaction” whichns¢hat it will loop
continuously when applied. Instead of being applied amcedch write transaction, it is
applied once at the beginning of the test bench andndiets when to perform a write
based on the FRAMEN, AD, and CBEn signals.

3.1.write.btim

1. Wait for a falling edge on FRAMEN. This was set ugbgbling “Falling Edge
Sensitive in the “Signal Properties” dialog for FRAMHEBe drawing the falling edge
where it should wait. This will block the entire diagr from running until that falling
edge is detected.

2. Address Cycle:

a) DecodeAddress Sample: read address from AD and reeateséction if AD[31:28]
is not “F”. This is an example of how to react to a gisddress range. This
address range was chosen arbitrarily.

b) DecodeCommand Sample: read command from CBEn amdtrgansaction if the
command is not “7” (write).

3. Data Cycle(s): A while loop is used to perform altled data cycles except for the last
one. It will loop until FRAMEn is de-asserted.

a) WaitForIRDY Sample: waits until IRDYn is assert&tle Multiplier is set to 100,
Full Expect is disabled, and Blocking is enabled. Thislbnation of settings will
cause the sample to wait up to 100 clock cycles for IRDYassert while blocking
the diagram from executing.

b) SampleData Sample: reads the data from the AD llistares it in a project level
variable named “sram”. To see where this variabledgated, right click on
slave.hpj project in the Project Window -> Classes \dariables -> Variables.

¢) IncAddress Marker: increments the address.

d) If FRAMERn is detected to be de-asserted at the erfieaddta cycle, then two
delays will be triggered: Release_TRDY and Release_ DEVSEL

4. Last Data Cycle: After FRAMEN de-asserts, one mota clale occurs. This data
cycle doesn't look any different than the rest ofd&t cycles, but two more Samples
must be used since it doesn't occur within the loop: Lagt®&®ata and
LastWaitForIRDY. These two Samples are equivalenbteédSampleData and
WaitForIRDY Samples that are used within the loop.

To help with starting and stopping this slave BFM, thezeavtwo tasks written in the
Component Model (slave.v).

1. StartRunning — calls “Apply_nowait” for both the read amilentransactions.
2. StopRunning — calls “Abort” for both the read and write treiisas.

4.PCI.hpj

This is the top-level project of this example and contamesinstance of slave.hpj, two
instances of master.hpj and three diagrams: clk_gendatatgrreset.btim, and
arbiter.btim. The clock generator and reset shoulselieexplanatory. The arbiter.btim
diagram is explained below. And following that iseaqplanation of the sequencer
process contained in the Component Model for this pr@jct.v).

4.1.arbiter.btim

1. Wait for RSTn to de-assert. This is done by makingriR&TRising Edge Sensitive”
signal and drawing a rising edge where the diagram sheaitd

2. InitLoop Marker: Waits for 5 clock cycles.

3. MainArbiterLoop Marker: loops forever

a) WaitForRequest Marker: waits for the assertion ofraguest signal.

b) Release previous GNT assertion if any GNT is askefT#is is done using a
conditional expression for each of the GNT signalsGNIT is asserted and REQ is
not, then GNT will be released. If GNT is assertedl BEQ is still asserted, then
GNT will be left asserted. Note: Because of thisatister is not necessarily very
fair.

c) CheckReg0 Sample: if REQO is asserted, then GNT®wiisserted by the
AssertGNTO delay, which is triggered by this sample. e@tise, the
Else_CheckReql Sample is triggered and this sequence contntii¢ise arbiter
determines which request was asserted.

d) WaitForTransStart Sample: waits for FRAMEnN to asséith indicates that the
transaction has started. The Multiplier is set to 16, Expect is disabled, and
Blocking is enabled. This combination will make the arbiait up to 16 clock
cycles for FRAMEN to assert. If FRAMEN doesn't asa4ttiin that time, a
“Failure” message will be displayed and the simulatidhlve halted. This failure
action is indicated by the “Else Action” for the Saepl

e) WaitForLastDataPhase Sample: waits for FRAMEnN tasiert. Works similar to
the WaitForTransStart sample, except that the nieltifs set to 100, so it will wait
up to 100 clock cycles. This number was arbitrarily chosethisrexample.

4.2.Sequencer Process (in Component Model)

Near the bottom of this file is the sequencer process¢h for “Sequencer process” to
find the beginning of the process). It does the follgwin

Starts clock generator and arbiter.

Applies the reset transaction.

Starts the slave BFM.

Performs some writes and reads using the masteragestan
Stops the slave BFM, arbiter, and clock.

arwnpE

	1.Overview
	2.Master.hpj
	2.1.write.btim

	3.Slave.hpj
	3.1.write.btim

	4.PCI.hpj
	4.1.arbiter.btim
	4.2.Sequencer Process (in Component Model)

