UARTTEST TestBencher Pro Example

© Copyright 1994-2004 SynaptiCAD, Inc.

Table of Contents

O YT Y=/ 2
AT 1 (ST YT = I o 1] o 3
I =10 LT = I o) 1T 4
4.Sequencer Process (in Component Model)............ooveiiiiiiiiiiiiiiiii e 5
5.REEIENCE MOUEL. .. et e e e e e e aeen 5

LT I [0V L Ao 5

6.Possible Enhancements t0 thisS TeSt BENCH........oviieiie e eeeeas 6

1.0verview

This example can be found in the Examples\TestBenctestdry of your SynaptiCAD
product installation. It contains three transactors: CLIKega&or, WriteSerial, and
ReadSerial. There is not a Model Under Test (MUThis éxample. Instead, the
WriteSerial and ReadSerial transactors communicateeaith other. They send and
receive serial data on a signal named UART. Buetly thork with parallel data at the
transactor level. For example, the write transactsrameeight bit argument which it then
converts to serial data. Both of these diagrams alse agarameter named “speed”
which controls how many clock cycles are to be useddoh &it of data. Here are a few
of the features used in this example:

Input Variables — WriteSerial — used to create “data” argtime

Output Variable — ReadSerial — used to send 8-bit data baekjtiencer process.
Store Sampled Value As Subroutine Output — ReadSerial s sta in data.
Variable Clocked Delays — WriteSerial — used to contval many clock cycles are
used for each bit of data.

Reference Model — used to check that the data receivedduiSerial is the same as
the data written by WriteSerial.

. For Loop Markers — ReadSerial — used to insert variable nurhistock cycles.

PN

o

(@]

2.WriteSerial.btim

This transactor takes two arguments: data and speed. Th& ddgument is an 8-bit
value that will be output one bit at a time on the UASRInal. This argument is defined
in the “Variable List” dialog for the diagram, which cla@ opened by clicking the
“Variables” button. The “speed” argument determines hamyntlock cycles to use for
each bit. This argument is defined in “Parameter” windsva “Free Parameter” since it
will be used to control Delay behavior.

Note: The project window can be used to display an overefeall the arguments to a
particular transaction. For example, go to the Pray@atiow and browse to the
following:

Component Model -> Class Library List -> uarttest.hpjl

There are two classes defined here: uarttest WriteSeair@nteters and

uarttest ReadSerial_parameters. Each of these contahshe arguments for their
respective transactors. You can also right-click @x@bmponent Model and select
“Classes and Variables” to bring up a dialog that liitsfdahe classes. These
“Parameters” classes are created automatically fobgsas on the different types of
arguments you have in the diagram. These include Statablés, input and output
variables from the Variable List, and “Applied Subroetlnput” Parameters such as
Delays and Samples.

Here's a breakdown of the events that occur when thisatréms is applied:

1. Drive out the first bit of data.

2. Wait for a positive clock edge.

3. Wait for a delay of D1. The value of this delay is “spedd0”, which represents
clock cycles since “Count Clock Edges” is set to CLK.pBer example, if speed is 1
then there will be no delay inserted. If speed is &) there will be 1 clock cycles
inserted (in addition to the clock edge we already waited fo

4. Drive out the second bit of data.

5. Wait for a delay of D2. The value of this delay is “speed™20”. If speed is one
then 1 clock cycle will be inserted. If speed is 2, tBefock cycles will be inserted,
etc.

6. Continue driving bits based on the delays drawn in idggaim.

Note: You can see how a particular “speed” affects thgrama by changing its value in
the “Parameter” window. This value has no affect olufation since it has “Is Apply
Subroutine Input” checked. To change this value, go to thtreter” window and
double-click on “speed”. It will bring up a “Free Paeter Properties” dialog where you
can modify the Min value. When you apply changes to thisglthe waveform will
update.

3.ReadSerial.btim

This transactor reads serial data from the UART sigmélreturns it as byte named
“data.” It also has input argument named “speed”. LikeNhgeSerial transactor, the
“speed” argument sets how many clock cycles are used peButit in this case a for
loop makes use of “speed” to insert extra clock cyclese W@t a similar for loop could
have been used in the WriteSerial transactor. Hewe'sequence of events for this
transactor:

1. For each bit (loop started by BitLoop Marker)

a) SAMPLEO: Store the bit in the appropriate locatiothef“data” variable. Double-
click on SAMPLEDO, then click on “HDL Code”. “Store i@pled Value to
Variable” is set to “@data[bitCount]”.

b) Wait for a rising clock edge

c¢) InsertClockCycles Marker: this loop will insert theid@ional clock cycles required
based on the “speed” variable. Double-click on thekeras name to see how the
for loop is configured.

4.Sequencer Process (in Component Model)

Double-click on the “Component Model” in the Projecindbw, uarttest.v, to open it up.
The sequencer process is near the bottom of theTiis process is where the test bench
sequence is controlled. It tests out the WriteSand| ReadSerial transactors using
various speeds (i.e. various number of clock cycles per bit¢ ReadSerial transactor
responds to data driven by the WriteSerial transactdorseach WriteSerial transaction
applied there is a corresponding ReadSerial transaapiplied in parallel. Here is a
breakdown of what this process does:

1. Start clock generator.
2. For speeds between 1 and 6

a) Start a WriteSerial transaction. A “nowait” app8ll is used so that we can
immediately start up a “ReadSerial” transaction.

b) Start a ReadSerial transaction. A “blocking” apply isallsed here so that the
sequencer process waits for the transaction to finighrdaebntinuing to the next
speed.

3. Stop the clock generator.

5.Reference Model

A reference model is being used in this example to helfy vbat the UART
transactions operate correctly. This option is enatyedght-clicking on the Component
Model, selecting “Project Generation Properties, sgldcting “Enable Reference
Model”. When this is enabled, a skeleton reference mwildbe generated during
“Make TB”. This skeleton is put in the Component ModeRAssociated Files folder and
has a “txt” extension. The uarttest_emulator.v module avaated from this skeleton.
Open up both of these files to get an idea of what Testige will generate and what
was added to make a valid reference model.

5.1.How it Works

Each transactor in the project has a corresponding tdkk ireference model. These
tasks have the same set of arguments (both input andtpasgpthe transactors. When a
“Master Transactor” is applied, the corresponding referenadel task will be applied
once the transactor finishes. The same inputs are pagsélde reference model task as
were passed into the transactor. Then, the outptite oéference model are compared to
the outputs of the transactor. Any differences gpented to the simulation log.

When a “Slave Transactor” is applied, the reference ihtadk will be called for each
completion of the transaction. In this example, onéy €LK generator is a slave
transactor so it's not too interesting. See PosEil@ncements to this Test Berfoh
how ReadSerial could have been implemented as a “Slawvesdactor”.

6.Possible Enhancements to this Test Bench

1.

Use “ApplyRandom” diagram calls. Instead of calling “AppVriteSerial_nowait”,
you could call “ApplyRandom_Serial_nowait” where the daia speed would be
randomly generated. Or you could set it up so that only tiaewdes randomly
generated. For more information on “ApplyRandom” se¢’/ABA” pdf. There is a
section named “How ApplyRandom Works.”

. Make ReadSerial a “Slave Transactor”. If ReadSeriatweslave it could be started

up at the beginning of the test bench with a given speed aog se that it responds
to all of the WriteSerial transactions. The catctehe that the speed passed into
WriteSerial must match the speed passed into ReadSer&ll,f the WriteSerial
transactions would have to run at the same speed forra ge@dSerial transaction
instance. Of course, you could always stop the ReadS&ve and start it back up
with a different speed. In addition to this considerati®@adSerial would also have to
be set up so that it knows when a transaction is starfih. may be as simple as
using a control signal.

Use for loop in WriteSerial (i.e. like ReadSeria8).similar for loop could have been
set up in WriteSerial, in which case none of the delaguld be necessary. In this
case, the state drawn inside of the for loop would be “@nddéx]”.

	1.Overview
	2.WriteSerial.btim
	3.ReadSerial.btim
	4.Sequencer Process (in Component Model)
	5.Reference Model
	5.1.How it Works

	6.Possible Enhancements to this Test Bench

