VME TestBencher Pro Example

© Copyright 1994-2004 SynaptiCAD, Inc.

Table of Contents

O YT Y/ 2
2. VME _arbiter N) ..o e 3
2 o | = U o1 (=Y o] (o 3...
S.VME MASEEI.ND]..ceeeiei e 4
3.1.requestbus.btim and releasebus.otim..........oovviiiiiiii 4
3.2.write.btim and read. Dtim. 4
ANME _SIAVE. NP .etiiiieiiieiiiii et nean 5
Lt TR 1 (= o) 5
5.VME 1€QUESTEI. NP . ceun ittt 6..
LT o IR (=T [U ST (T 0 1 6
LT 1.1 0] o 7

1.0verview

This example was created for VHDL and Verilog and camobed in the following
directories:
<INSTALL>\Examples\Verilog\VME
<INSTALL>\Examples\VHDL\VME

The VME example demonstrates how you would create dnusidnal-models (BFMs)

for the following VME components: arbiter, masterd atave. It also demonstrates how
you might configure a set of slave BFM instances to respoddférent address ranges.
Each of these BFMs are represented by a TestBencherdjeat which are all
instantiated in a project named VME.hpj. This entkaneple is composed of unclocked
diagrams. Here is the full project hierarchy:

VME.hpj
VME_arbiter.hpj
VME_master.hpj
VME_requester.hpj
VME_slave.hpj

Some features demonstrated in this example include:

Component Signals & Ports dialog -used to specify poeadi BFM.
Edge Sensitive Signals — used throughout most of the ¢tarnsa
User-defined condition Samples — master write and raaddctors.
Project Level Variable — VME_slave “memory”.

Store Sampled Value to Variable — VME_slave write trefts.

Multiple Delay Resolution — VME_requester

Diagram Input Variables — VME_slave — used to configure addaenge.

Nog,rwNE

Open VME.hpj and look at the Project window to seehibearchy of projects. The
instantiations are displayed below the top level Compoewel. You can browse the
contents of master.hpj and slave.hpj via the Projéxcaty folder.

Throughout the diagrams in this example, names for dedaysps, and holds were
chosen based on the VME specification. Typically,ntmabers used in the names match
up with the timing parameters given in the spec. Althowghesof the delays don't have
a corresponding timing parameter in the spec. VME als@ Is&s of “rules” and you'll

see names that contain “Rule” in them for these.

2.VME_arbiter.hpj

There are multiple arbitration schemes supported by ke specification. This BFM
could theoretically contain a transactor for each seheBut, for this example it only
implements one of them and has only one transactagrain, sgl_arbiter.btim. This is a
“Slave Transactor” and responds to requests put out on the@R®I signal. It only
grants requests to the bus when there are no transaotpregress. Here is a detailed
sequence of what this transactor does when running.

2.1.sgl_arbiter.btim

1. WaitForRequest Sample: waits up to 50 ns for an asserti@R8. If an assertion on
BR3 is detected, it will trigger delay DO which will adB8G3. If the Sample times
out before BR3 asserts, then it will restart theydian.

2. Wait for BBSY to assert. This is done by settindB@B5Y as a “Falling Edge
Sensitive” signal and drawing the falling edge whegeaitbiter should wait.

3. D1 Delay: this is triggered by the falling edge of BB3¥will release grant of the bus
by de-asserting BG3. This delay isn't strictly neagssiace the diagram is already
waiting on the falling edge on BBSY. It was put ingaeldo make sure that the delay
stays fixed to 10 ns when editing the diagram. It alskeshalear that the delay
between BBSY and BG3 is not arbitrarily chosen.

4. Wait for BBSY to de-assert. This is done by setting BB as a “Rising Edge
Sensitive” signal and drawing the rising edge wheratb#er should wait.

5. Repeat steps 1-4. This looping affect is achieved bynmalgl_arbiter a “Slave
Transaction”. This setting is set when adding the dragoathe project. But, it can
also be changed by going to the “Diagram Setting” dialog.

3.VME_master.hpj

The master BFM consists of four transactors and aneester BFM instance. The
requester BFM is explained in greater detail in its gection. Essentially, the master
uses the requester to communicate with the arbiter toveegecess to the VME bus. The
requester could have been implemented as part of therrB&dke but there are other
types of VME components (not used in this example)ribad to request access to the
bus, so the requester behavior was encapsulated in a sdpakét

3.1l.requestbus.btim and releasebus.btim

These are the two transactors that interact witleeester BFM. The “requestbus”
transactor asserts DEVICE_WANTS_BUS, then waits fBWECE_GRANTED_BUS to
assert. The “releasebus” transadeasserts DEVICE_WANTS_BUS, then waits for
DEVICE_GRANTED_ BUS tale-assert.

3.2.write.btim and read.btim

These two transactors are similar, so only the witita.will be explained in detail. The
write transactor has two input arguments: $$addr and $$datare@d transactor has
one input argument, $$addr, and one output argument, Sampleeris the sequence
of events for write.btim:

1. Put address on “A” bus.

2. DTACK_highcheck Sample: waits until DTACK is de-assé. This is a level
sensitive wait. Full Expect is disabled, the mulépis set to 1000 and Blocking is
enabled. This combination causes the transactor taiyad 1000 ns for DTACK to
de-assert.

3. BERR_highcheck Sample: works just like the DTACK _highklssample, but waits
for BERR to de-assert.

4. Assert AS after a delay of D4 (10 ns).

5. Put data on “D” bus. This is done by the AS_to_DS delay.

6. Assert DSO and DS1. This is either done by the D&slelaD10 delays, whichever
will cause the latest transition. Double-click on fddéng edge to open the “Edge
Properties” dialog. Notice that “Latest Transitioms'selected. The Multiple Delay
Resolution can be configured separately for each edge diagpam.

7. Wait for DTACK to assert. DTACK is set up to be “iajl Edge Sensitive”.

8. Release all the control signals based on the apprepeddys.

During this diagram's execution, all of the Setup and ldb&tks are running in parallel.
If any of these checks fail and error message withlgdput to the simulator's log file.

4 VME_slave.hpj

The slave BFM contains three transactors: gluelogax eand write. All of these
transactors are configured to be “Slave Transactorsind@agram Settings). This will
cause them all to run continuously in a looping mode wpetieal. The read and write
diagrams are set up to respond to VME control signals. gilisdogic diagram defines a
signal that represents DSO “and” DS1. This signal exmatl to the VME_slave project
and is used in the write and read diagrams. Only the diagram will be explained in
detail here since the read is very similar. Therevisreble named “memory” defined in
this project. The “D_tomemory” Sample in the writegil@am stores values in this
variable. And this variable is used to drive the “D” buthe read diagram.

Both the write and the read transactors have two inpighlas defined:
lowValidAddress and highValidAddress. These define pedgiwhat address range to
respond to and are passed in via the transactor apply call.

4.1.write.btim

1. Wait for falling edge on AS (Address Strobe). AS isupeas “Falling Edge
Sensitive”.

2. address Sample: This sample has a user-defined corstido “(A >=
write_args.lowValidAddress) && (A <= write_args.highValiddress)”. This
condition makes sure that the address on “A” is in ldne% address range. Ifitisn't
then it will restart the diagram. To see how thisasup, double-click on the sample's
name to open the Sample Properties dialog, then clickeoHDL Code button to
open the Code Generation Options dialog.

3. Wait for both DSO and DS1 to assert. This is achibyesktting DS_and to be
“Falling Edge Sensitive.”

4. CheckForWrite Sample: Since this is the write tramsathis sample checks to make
sure that WRITE is asserted before continuing. If TRis de-asserted then the
Sample will restart the diagram.

. D28 Delay: assert DTACK after 30 ns.

. Latch data while data strobes (DSO and DS1) are assditslis done by the
DSO0_latch and DS1_latch signals. For example, the D20 \eds created by setting
the following in the Signal Properties dialog:

a) Boolean Equation = D[7:0]
b) Clock = DSO
c) Edge/Level = low

7. Wait for both DSO and DS1 to de-assert. This happens Bificand is also a “Rising
Edge Sensitive” signal.

8. D_tomemory Sample: This stores the latched data ini@bl@array named
“‘memory”. Inthe Sample's Code Generation Optio@tiemory[address-
write_args.lowValidAddress]” was specified in the “St&@mpled Value to Variable”
edit box. Open the Classes and Variables dialoh®VME_slave project to see
how the “memory” variable was created.

9. Release DTACK after D30 delay.

o Ol

5.VME_requester.hpj

The requester BFM contains one transactor, rwd_requelies.BFM is instantiated by
the VME_master BFM and could be used by any VME BFM tieads to request access
to the bus.

5.1.rwd_requester.btim

o gk

. Wait for assertion of DEVICE_WANTS_BUS. This signatét as “Falling Edge

Sensitive”. The master's requestbus transactor willtatbé® when it needs access to
the bus.

. Assert BR3 after delay of DO (5 ns). This is the bgsest signal that the arbiter will

respond to.

Wait for assertion of BG3IN, the bus grant sigrigis is set as “Falling Edge
Sensitive”.

Assert DEVICE_GRANTED_BUS, which will is what the rrexsis waiting for.
Release BR3.

Assert BBSY after D1 (5 ns) to indicate that theibumisy. The arbiter will continue
to grant the master access to the bus as long asugyssignal is asserted.

Wait for BG3IN to de-assert. This is set as “Ridiuge Sensitive”.

Wait for DEVICE_WANTS_BUS to de-assert.

Release DEVICE_GRANTED_BUS.

0.Release BBSY. Note that there are four delays thet this release: Rule3.9,

Rule3.7, D3, and Rule3.10 This is to ensure that all & Yules are being honored.

The “Multiple Delay Resolution” for this edge is setltatest Transition”, which

means the transactor will detect (during simulationictvidelay will cause the latest

transition to occur for this edge, then use that delay ve dine edge. You can edit

this setting by double-clicking on the edge itself to bripghe “Edge Properties”

dialog. Here's what each delay ensures:

a) Rule3.9 — release of BBSY must be no less than 30ersBIN is asserted.

b) Rule3.7 — release of BBSY must be no less than 90ersBBSY is asserted.

c) D3 —release of BBSY must not occur before DEVICE_WANBUS is de-
asserted.

d) Rule3.10 — release of BBSY must not occur before BGSli¢-asserted.

6.VME.hpj

This is where all of the BFMs are connected togetfiéere is no Model Under Test
(MUT) in this example since it's purpose is to demorestnaiv to create BFMs. Instead,
the BFMs interact with each other (i.e. when the mastgiorms a write the slave reacts
and stores the data written to the bus). There age g#iaves and four masters
instantiated along with the arbiter instantiation. ViME bus grant daisy chain is
achieved by connecting a series ofisl®@G30OUT signals to each master instance. The
actual port connection is shown in the project windofsyoli want to see the formal port
names, double-click on an instance to bring up the “S&garad Ports” dialog.

6.1.Sequencer Process (in Component Model)

Double-click on the Component Model in the project &ted scroll to the sequencer
process, which is located near the bottom. Here igakbdown of what the sequencer
process does:

1. Starts up each slave with a given address range. InMike $lave's component
model, there are two user-defined tasks: StartRunning tapdR8nning. The
StartRunning task was written to take the address rangpwswhich then starts
each transactor in a “no-wait” mode using that addi@sge:

Starts up the requester for each master.

Starts up the arbiter.

Applies the reset transactor.

Performs writes and reads using the different masters

Performs an invalid write, which results in a loggedreduring simulation.
Stops all “Slave Transactors”: arbiter, requesters, landss

NogsWDN

	1.Overview
	2.VME_arbiter.hpj
	2.1.sgl_arbiter.btim

	3.VME_master.hpj
	3.1.requestbus.btim and releasebus.btim
	3.2.write.btim and read.btim

	4.VME_slave.hpj
	4.1.write.btim

	5.VME_requester.hpj
	5.1.rwd_requester.btim

	6.VME.hpj
	6.1.Sequencer Process (in Component Model)

