Reactive Test Bench Generation

An option that generates VHDL and Verilog test benches that react to the simulation model!

Non-Reactive Test Benches

- Non-Reactive Test Bench Benefits:
 - Free with WaveFormer Pro, VeriLogger Pro, and DataSheet Pro
 - Generates VHDL and Verilog stimulus models and test benches from graphical timing diagrams based on absolute time
 - Auto-extracts port information from MUT into diagram
 - Instantiates MUT inside of test harness
- Problems:
 - Does not address generating clocked stimulus
 - Does not address the problem of figuring out if the results from the MUT are correct
 - Does not allow insertion of user defined code
 - Drawing complex waveforms can be tedious since looping constructs don't exist

Unclocked Stimulus

Without the RTB option, stimulus is *unclocked*, so time delay values control when stimulus is driven

VHDL:Verilog:

wait for 50 ns; #50; SIG0 <= '0'; SIG0_driver <= 1'b0; wait for 50 ns; #50; SIG1 <= '0'; SIG1 driver <= 1'b0;</pre>

RTB adds Clocked Stimulus

With RTB, signal stimulus can optionally be *clocked* relative to one or more* clock signals

VHDL:

SIG0 <= '0';

Verilog: wait until rising edge(CLK); @(posedge CLK);

SIG0 driver <= 1'b0;

wait until rising edge(CLK); @(posedge CLK); SIGO driver <= 1'b1; SIG0 <= '1';

*Multiple clock domains create one process per clock

Reactive Test Bench (RTB) Graphical Tool Set

- Waveforms represent stimulus and expected responses
- Variables store sampled values and can modify the driven stimulus vectors during a simulation run.
- **Delays** control edge timing with min, max, typical, and random time delays
- Setups & Holds monitor stability between transitions
- **Samples -** verify and react to output from MUT
- Markers model looping constructs, insert native HDL subroutine calls, or end transaction

Waveforms Provide Stimulus and Expected Response Information

- Graphically draw stimulus waveforms on the input ports of the model under test.
- Graphically draw expected response waveforms on the output ports of the model under test

다 Diagram - untitled0.btim*								
Add Signal Add Bus	Delay Setup Sample HIGH LOW TRI VAL INVal WHI WLO HEX							
Add Clock Add Space	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
141.0ns -98.00n	s Ons (50ns 1100ns 1150ns 1200ns 129							
Reques	st							
Grar	nt							

Variables Parameterize State Values

- Variables can drive values on stimulus waveforms
- Variables can store values on expected waveforms
- Waveform states can be expressed as conditional expressions using variables

🖵 Diagram - reactive	_variables.btim								
Add Signal Add Bus Add Clock Add Spacer	Delay Setup Sample HIGH LOW TRI VAL INVal WHI WLO HEX Q+ Q Hold Text Marker Image: Comparison of the set of the								
164.0ns 52.00ns	Ons 50ns 100ns 150ns 200ns								
CSB									
WRB									
ABUS[7:0]	(addr)								
DBUS[7:0]	data								

Delays Parameterize Time Values

- Delays represent the time between two edges in the diagram
- Specify min and max values
- Delay values can be time or cycle-based
- Conditionally control when edges occur

🖵 Diagram - reactive	_delays.btim						
Add Signal Add Bus Add Clock Add Spacer	Delay Setup Sample HIGH LOW TRI VAL INVal WHI WLO HEX Q + Q F Hold Text Marker						
24.00ns <mark>-64.00ns</mark>	Ons 50ns 100ns 150ns 200ns						
CLK							
CSB							
WRB							
ABUS[7:0]	addr X						
DBUS[7:0]	data >						

Samples Verify MUT Output

- Sample constructs can monitor and perform actions based on the data sampled
- Sample can work at a single point or over a windowed area
- They can perform relative to the beginning of the transaction or relative to another event in the diagram.

512.0ps	-143.9ns	Dns 50ns 100ns 150ns								
	SIG0									
		P Absolute_Point_Sample								
	SIG1[3:0]	a X b X c X d X e X f)								
	SIG2	<u> </u>								
	SIG3[3:0]	P Absolute_Window_Sample Relative_Window_Sample a X b X c X d X e X f								

Markers used for Control & Looping Sections of Transactions

- Specify the End of Transaction
- Create loops using *for*, *while*, and *repeat* loop markers
- Insert HDL code

- Diagram - loopdiagram.btim											
Add Signal Add Bus	Delay	Setup Sample	HIGH	LOW	TRI VA	L INVal	WHI WLO) HEX	Q +	Q F	View Variabl
Add Clock Add Spacer	Hold	Text Plarker			\rightarrow		2			Q R	Class Metho
3.072ns - <mark>355.8ns</mark>	Ons	100)ns		200ns		300ns	•	400ns		500ns
		For Loop					,	Loop Ei	nd		_
		~	لل ا	Vhile Lo	ор .	Loop E	ind 🐔			End [Diagram 🗕
ССКО					*	<u>ا</u>		L		<u> </u>	
SIGO				Va	ırO)			
SIG1					۷	ar1)			

Reactive Upgrade Options

Features	Non-Reactive	Reactive TB	
WaveFormer Pro, VeriLogger Pro, DataSheet Pro	Standard	Optional	
Extract signal information from HDL models	Yes	Yes	
Generate stimulus models for VHDL and Verilog	Yes	Yes	
Draw waveforms	Yes	Yes	
Generate waveforms from time-based equations	Yes	Yes	
Draw delays, setups, holds, samples, and markers	Yes	Yes	
Generate Reactive VHDL and Verilog test bench models		Yes	
Samples generate code to verify reaction of MUT during simulation		Yes	
Markers create loops to repeat waveform sections		Yes	
Variables drive state values in waveforms		Yes	
Delays parameterize time values during simulation		Yes	
Clock-based test benches		Yes	

