
Copyright © 2011, SynaptiCAD Sales, Inc.

SynaptiCAD Tutorials

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: January 2011 in (whereever you are located)

SynaptiCAD Tutorials

Copyright Copyright © 2011, SynaptiCAD Sales, Inc., version 14

SynaptiCAD’s tutorials demonstrate everything from how to
draw basic timing diagrams to advanced VHDL and Verilog
simulation techniques. The tutorials are grouped together by
product category, so that it is easy to pick the tutorials that
cover the features that you need for your design. If you are
new to our product line, the best tutorial to start with is the
Basic Drawing and Timing Analysis tutorial, because this
demonstrates how to draw waveforms and the general design
strategy for our timing diagram editors. Some of the features
demonstrated require additional licenses for the particular
software option. Please see our web site or contact our sales
department for specific information on those features.

BugHunter Pro, VeriLogger Extreme, VeriLogger Pro

SynaptiCAD Product Tutorials
DataSheet Pro, WaveFormer Pro, Timing Diagrammer Pro

TestBencher Pro, GigaWave Viewer, Transaction Tracker

SynaptiCAD Tutorials4

Copyright © 2011, SynaptiCAD Sales, Inc.

Table of Contents

Foreword 0

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 10

... 10(TD) 1.1 Timing Diagram Editor Choices

... 12(TD) 1.2 Set the Base and Dispaly Time Unit

... 13(TD) 1.3. Add the Clock

... 15(TD) 1.4 Add the Signals

... 15(TD) 1.5 Drawing Signal Waveforms

... 17(TD) 1.6 Editing Signal Waveforms

... 19(TD) 1.7 Adjust Diagram to Match Figure

... 20(TD) 1.8 Add the D Flip-Flop Propagation Delay

... 22(TD) 1.9 Add the Inverter Propagation Delay

... 24(TD) 1.10 Add the Setup for the Dinput to Clock

... 25(TD) 1.11 Add a Free Parameter

... 27(TD) 1.12 Drawing with Equations

... 29(TD) 1.13 Drawing Virtual Busses

... 31(TD) 1.14 Drawing Group Buses and Differential Signals

... 33(TD) 1.15 Working with Drawing Environnment

... 35(TD) 1.16 Summary

Timing Diagram Editor 2: Simulated Signals 36

... 36(TD) 2.1 Setup for Simulation

... 38(TD) 2.2 Simulate a Boolean Equation

... 39(TD) 2.3 Boolean Equations with Delays

... 40(TD) 2.4 Register and Latch Signals

... 42(TD) 2.5 Set and Clear Lines

... 44(TD) 2.6 Multi-bit Equations

... 46(TD) 2.7 Design a Multi-Bit Counter

... 47(TD) 2.8 End Diagram Marker Stops Simulation

... 48(TD) 2.9 Behavioral HDL Code

... 50(TD) 2.10 Simulated Bus Signals

... 52(TD) 2.11 Summary of Simulated Signals Tutorial

Timing Diagram Editor 3: Display and Documentation 53

... 53(TD) 3.1 Setup for the Tutorial

... 54(TD) 3.2 Parameter Display Strings

... 56(TD) 3.3 Repeat Parameters Across the Diagram

5Contents

5

Copyright © 2011, SynaptiCAD Sales, Inc.

... 57(TD) 3.4 Move Parameters to Different Signals

... 57(TD) 3.5 Adjust Parameter Vertical Placement

... 58(TD) 3.6 Curved Parameters

... 59(TD) 3.7 Clock Jitter and Display

... 61(TD) 3.8 Marker Time Compression

... 63(TD) 3.9 Marker Snap to Edge

... 64(TD) 3.10 Marker Loops and Pipelines

... 65(TD) 3.11 Spacers and Text Font Controls

... 67(TD) 3.12 Highlight Regions with Text Objects

... 67(TD) 3.13 Text and Hidden Signals

... 69(TD) 3.14 Summary of Display and Documentation Tutorial

Timing Diagram Editor 4: Analog Signals 70

... 70(TD) 4.1 Viewing Analog Waveforms

... 73(TD) 4.2 Faster Drawing with Waveform Equation Blocks

... 74(TD) 4.3 Writing Python Waveform Equation Blocks

... 76(TD) 4.4 State Label Equation Alternative

... 77(TD) 4.5 Drawing a Step Signal

... 78(TD) 4.6 Generating Sine Waves

... 81(TD) 4.7 Generating Capacitor Charge and Discharge

... 83(TD) 4.8 Generating Ramp Waveforms

... 83(TD) 4.9 Random Analog Equations

... 85(TD) 4.10 Exporting to SPICE, VHDL, and Verilog

... 86(TD) 4.11 ADC and DAC Conversion

... 88(TD) 4.12 Summary of Analog Signals Tutorial

Timing Diagram Editor 5: Parameter Libraries 90

... 90(TD) 5.1 Setup for Library Tutorial

... 91(TD) 5.2 Add Libraries to the "Library Search List"

... 92(TD) 5.3 Setup the Library Specifications

... 92(TD) 5.4 Investigate Preferences Dialog

... 92(TD) 5.5 Referencing Parameters in Libraries

... 95
(TD) 5.6 Using Macros to Examine Tradeoffs Between Different
Libraries

... 97(TD) 5.7 Parameter Libraries Summary

Timing Diagram Editor 6: Advanced Modeling and Simulation 98

... 99(TD) 6.1 Set up a New Timing Diagram

... 100
(TD) 6.2 Generate the Clock, Draw Waveforms, & Use Waveform
Equations

... 101(TD) 6.3 Modeling State Machines

SynaptiCAD Tutorials6

Copyright © 2011, SynaptiCAD Sales, Inc.

... 103(TD) 6.4 Checking for Simulation Errors

... 104(TD) 6.5 Incremental Simulation

... 105(TD) 6.6 Modeling Combinational Logic

... 105(TD) 6.7 Entering Direct HDL Code for Simulated Signals

... 106(TD) 6.8 Modeling n-bit Gates

... 106
(TD) 6.9 Incorporating Pre-written HDL Models into Waveformer
Simuations

... 107(TD) 6.10 Modeling the Incrementor and Latch Circuit

... 108(TD) 6.11 Modeling Tri-State Gates

... 108(TD) 6.12 Debugging External Verilog Models

... 108(TD) 6.13 Verify the Histogram Circuit

... 109(TD) 6.14 Controlling the Length of the Simulation

... 109(TD) 6.15 Editing Verilog Source Files

... 110
(TD) 6.16 Simulating Your Model with Traditional Verilog
Simulators

... 110(TD) 6.17 Summary

Test Bench Generation 1: VHDL-Verilog Stimulus 111

... 111(TBench) 1.1 Load the Tutorial Timing Diagram

... 112(TBench) 1.2 Hex and Binary State Values

... 113(TBench) 1.3 Export a Verilog Test Bench

... 115(TBench) 1.4 Signal Data Types and VHDL user defined types

... 118(TBench) 1.5. Export a VHDL Test Bench

... 121(TBench) 1.6 Summary of VHDL-Verilog Stimulus Tutorial

Test Bench Generation 2: Reactive Test Bench Option 122

... 122(TBench) 2.1 Run Program with Reactive Test Bench Option

... 122(TBench) 2.2 Create a Project to hold the MUT

... 124(TBench) 2.3 Extract Signal Names and setup the Clock

... 127(TBench) 2.4 Draw Stimulus Waveforms and Export Test Bench

... 129
(TBench) 2.5 Draw Expected Waveform and Wait for the
Assertion

... 132(TBench) 2.6 Draw a Read Cycle and Verify the read

... 133(TBench) 2.7 Add a Sample to Verify Data Read from MUT

... 135(TBench) 2.8 Drive Waveform Values using a File

... 138
(TBench) 2.9 Create For-Loop to Perform Multiple Writes and
Reads

... 140(TBench) 2.10 Alternate Test Bench Designs

... 141(TBench) 2.11 Summary of Reactive Test Bench Tutorial

Test Bench Generation 3: TestBencher Pro Basic Tutorial 142

7Contents

7

Copyright © 2011, SynaptiCAD Sales, Inc.

... 142(TBench) 3.1 Run TestBencher Pro

... 143(TBench) 3.2 Create a Project

... 145(TBench) 3.3 Add the SRAM model to the Project

... 146(TBench) 3.4 Setup the Template Diagram

... 148(TBench) 3.5 Create the Write Cycle Transaction Diagram

... 150(TBench) 3.6 Create the Read Cycle Transaction Diagram

... 152(TBench) 3.7 Add a Sample to Verify Data

... 154(TBench) 3.8 Create the Initialize Transaction Diagram

... 156(TBench) 3.9 Add Transaction Calls to the Sequencer Process

... 159(TBench) 3.10 Setup the Simulator

... 160(TBench) 3.11 Generate the Test Bench and Simulate

... 160(TBench) 3.12 Examine Report Window Results

... 161(TBench) 3.13 Examine the Stimulus and Results Diagram

... 162(TBench) 3.14 TestBencher Pro Basic Tutorial Summary

Test Bench Generation 4: TestBencher Pro with Random
Transactions 163

... 163(TBench) 4.1 Run TestBencher Pro

... 164(TBench) 4.2 Setup the VHDL Simulator

... 165(TBench) 4.3 Load the RandomizedSweepTest Project

... 166(TBench) 4.4 Weight the Transaction Types

... 167(TBench) 4.5 Post Random Transaction Types

... 168(TBench) 4.6 Constrain the Random Data

... 170(TBench) 4.7 Simulate and View the Results

... 172(TBench) 4.8 Set the Random Seed

... 173(TBench) 4.9 Randomize Transactions Summary

Simulation 1: VeriLogger Basic Verilog Simulation 174

... 174(Sim) 1.1 Simulator Choices

... 175(Sim) 1.2 Add Files to the Project

... 177(Sim) 1.3 Build the Tree and Investigate the Project

... 180(Sim) 1.4 Simulate the Project

... 181(Sim) 1.5 Prepare for Graphical Test Bench Generation

... 183(Sim) 1.6 Draw Test Bench in Debug Run Mode

... 185(Sim) 1.7 Simulate in Auto Run Mode

... 187(Sim) 1.8 Breakpoints, Stepping and Inspecting

... 189(Sim) 1.9 Archiving Stimulus and Results

... 190(Sim) 1.10 Saving the Project files

... 191(Sim) 1.11 Summary of VeriLogger Basic Verilog Simulation

SynaptiCAD Tutorials8

Copyright © 2011, SynaptiCAD Sales, Inc.

Simulation 2: Using WaveFormer with ModelSim VHDL 192

... 192(Sim) 2.1 Compile SynaptiCAD Library Models

... 194(Sim) 2.2 Create a project and extract the ports

... 196(Sim) 2.3 Draw the test bench waveforms

... 198(Sim) 2.4 Export Waveforms to VHDL

... 199(Sim) 2.5 Simulate VHDL test bench using ModelSim

... 200(Sim) 2.6 Compare simulation results against expected results

... 204(Sim) 2.7 Summary of Using WaveFormer with ModelSim VHDL

Waveform Comparison Tutorial 205

... 205(Compare) 1: Setup for using Compare

... 206(Compare) 2: Individual Compare Signals

... 208(Compare) 3: Experiment with Tolerance

... 209(Compare) 4: Compare Timing Diagrams

... 211(Compare) 5: Set All Compare Signal Properties

... 213(Compare) 6: Find the Differences

... 214(Compare) 7: Perform a Clocked Comparison

... 216(Compare) 8: Compare During Clock Cycle Windows

... 218(Compare) 9: Mask Sections to Exclude Comparison

... 220(Compare) 10: Don't Care Regions

... 221
(Compare) 11: Adjust the Time Difference Between Two
Diagrams

... 222(Compare) 12: Summary of the Comparison Tutorial

Gigawave and WaveViewer Viewer Tutorial 224

... 224(Viewer) 1: Converting a vcd file into a btim file

... 224(Viewer) 2: Importing a subset of the Waveforms

... 226(Viewer) 3: Creating a Filter File to selectively load signals

... 227(Viewer) 4: Show and Hide Signals in the display

... 228
(Viewer) 5: Options: Gigawave, Waveform
Comparison,Transaction Tracking

... 229(Viewer) 6: Waveviewer/GigaWave Viewer Tutorial Summary

Transaction Tracker Tutorial 230

... 231(TT) 1: Open the Example File

... 231(TT) 2: Match all occurrences of a simple pattern

... 232
(TT) 3: Match Consecutive Occurrences with Concatenation
Operator

... 232(TT) 4: Match with consecutive repetition Operator

... 233(TT) 5: Match with non-consecutive Repetition Operator

9Contents

9

Copyright © 2011, SynaptiCAD Sales, Inc.

... 233(TT) 6: Bit-slices and the Boolean operators

... 234(TT) 7: Implication operator

... 234(TT) 8: Implication Next-Cycle operator

... 234(TT) 9: PSL Property

... 235(TT) 10: Summary of Transaction Tracker Tutorial

Index 236

SynaptiCAD Tutorials10

Copyright © 2011, SynaptiCAD Sales, Inc.

Timing Diagram Editor 1: Basic Drawing and Timing
Analysis

This tutorial demonstrates the basic timing diagram editor features. It teaches you how to draw timing
diagrams using delays, setups, clocks and part libraries and how to use timing diagrams to help
detect timing errors in digital designs. It also covers the waveform editing features, measurement and
quick access buttons.

You will draw the timing diagram for a circuit that divides the clock frequency in half. Both the flip-flop
and the inverter have propagation times that delay the arrival of the Dinput signal. If Dinput is delayed
too long it will violate the data-to-clock setup time (Dsetup). This increases the risk of the flip-flop
failing to clock in the data and may lead to the flip-flop entering a metastable state.

clk 20MHz (50ns period)

DFFtp 5-18ns D flip-flop (74ALS74): Clock to Q propagation time

Dsetup 15ns minimum D flip-flop (74ALS74): D to rising edge Clock setup time

INVtp 3-11ns Inverter (74ALS04): propagation time

Above is an image of the timing diagram and parameter table that you will enter during the tutorial.
The first thing you may notice is the gray signal transitions caused by the min/max values of the
component delays. The gray areas of the signal transitions are uncertainty regions, which indicate
that the signal may transition any time during that period. This is a little disconcerting especially if
you have been using a low-end simulator that cannot compute both min and max at the same time.
This representation shows the entire range of possible circuit performance, so that there won't be any
surprises during production when you get components at extreme ends of their tolerance range.

(TD) 1.1 Timing Diagram Editor Choices

SynaptiCAD has three levels of timing diagram editors. The most basic is Timing Diagrammer Pro,
which allows drawing and basic timing analysis using delays, setups and holds. The middle level is
WaveFormer Pro, which has a built in simulation engine that allows signals to be described using
Boolean and registered logic equation. WaveFormer is also a universal waveform translator and can
take waveforms from one format and convert it to a different format. And the highest level is
DataSheet Pro which supports multiple timing diagram display, object linking and embedding, and
more image file formats. Each editor has all of the features of the products that are below it. This
tutorial covers basic features which are supported in all three editors.

Run a Timing Diagram Editor:

Run one of the timing diagram editors from the Start Menu. This tutorial cannot be done with
BugHunter Pro unless you also have a license for the Timing Analysis Option.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 11

Copyright © 2011, SynaptiCAD Sales, Inc.

Open a New Timing Diagram File:

Select the File > New Timing Diagram menu to open a diagram editing window and a matching
parameter window.

Investigate the Status Bar:

Move the cursor over the buttons on the diagram editor window, and then look at the bottom left
corner of the big window to see the status bar.

As you perform this tutorial, keep an eye on the status bar. It will give you hints on the types of

SynaptiCAD Tutorials12

Copyright © 2011, SynaptiCAD Sales, Inc.

functions that the mouse can perform at that particular place. The status bar also works when the
mouse is inside the drawing window.

(TD) 1.2 Set the Base and Dispaly Time Unit

The base time unit controls the accuracy of the of time calculations. It is the smallest representable
amount of time, and all time values are internally stored in terms of the base time unit. The display
time unit controls the units for entering and displaying the results. At the beginning of a new design
you should check these settings to make sure they are valid for the time ranges that you are working
in.

Set the Base Time Unit:

The base time unit for your project should be set at least one unit below the units you are working in
for best rounding performance during division operations (clock frequencies are inverted and stored
internally as clock periods). The circuit that we are modeling in this tutorial has gate propagation
times in the range of 3 to 18 nanoseconds and a clock with a period of 20ns. Therefore we will set
the base time units to picoseconds.

Select the Options > Base Time Unit menu, to open the Base Time Unit dialog.

Check the Active Diagram
box so that the dialog
operates on your new timing
diagram. Notice that the
dialog displays the name of
the diagram so that you can
tell which diagram is the
active one in a multi-diagram
display.

Check the ps button to set
the base time unit to
picoseconds.

The remaining options
control how any existing
parameters or signals are
changed when the base time
unit is changed and have no
effect on an empty timing
diagram.

Press the OK button to
close the dialog.

Set the Display Time Unit:

Set the display time unit to the units you most commonly use in the design. In this tutorial, all of the
times are listed in nanoseconds so that will be the easiest time setting to enter the values.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 13

Copyright © 2011, SynaptiCAD Sales, Inc.

Select the Options > Display Unit
menu option. This will display a
submenu of display time units. The
checked time is the current display
time unit (Default is ns =
nanoseconds).

Click on ns to make nanoseconds
the display time unit.

(TD) 1.3. Add the Clock

First we will create a clock. Clocks draw themselves based on their parameters, so you will not be
able to drag and drop clock edges or make a delay end on a clock edge. For this tutorial, the clock is
named clk, has a period of 50ns (20MHz), and starts with a low segment.

Define the Clock Parameters using a dialog:

Press the Add Clock button to open the
Edit Clock Parameters dialog.

In the Name box, type clk to set the
clock name.

In the Period box enter 50 and make
sure that the MHz/ns button is selected.
When you tab out of this box, the Freq
box will change to 20 to match the new
period value.

Notice that the period can be also be
defined by a period formula or in terms
of a reference clock.

Check the Invert (Starts Low) box at the
bottom of the dialog. Clocks are normally
displayed high at time zero, so "invert"
makes the clock start low at time zero.

Notice that the clock can have an offset
starting time from time zero. The duty
cycle can be set to any percentage value.
And edge jitter is uncertainty around the
occurrence of the clock edge.

SynaptiCAD Tutorials14

Copyright © 2011, SynaptiCAD Sales, Inc.

Notice that buffer delays represent
uncertainty after the clock edge (used to
model uncertainty from clock tree
buffers), and delay correlation determines
how closely delays are related to each
other.

For more information on correlation and
the different types of delays, and clock
grids read Chapter 2: Clocks in the on-
line help

Press the OK button to close
the dialog. Make sure that the
clock looks like the following
image.

Reopen the Edit Clock Parameters dialog:

Double left click on the clock waveform to reopen the Edit clock parameters dialog. Note, if
you click too close to a clock edge it opens an edge dialog instead of the parameters dialog.

Press the Ok button to close the dialog.

Hide the direction and index columns:

The direction and index columns are
not used in this tutorial so hide them
by choosing Options > Drawing
Preferences to open the dialog. Then
uncheck Show Direction Icons and
Show Index Numbers.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 15

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 1.4 Add the Signals

Next, add two signals and name them "Qoutput" and "Dinput".

Use the Add Signal button to create new signals:

Press the Add Signal button two
times to add two signals to the
diagram window.

The signals will have default names
such as SIG0 and SIG1.

Double Click to rename the signals:

Double click on the SIG0 signal
name to open the Signal Properties
dialog.

Enter Qoutput into the Name edit
box. (DO NOT CLOSE THE DIALOG)

Click the Next button or ALT-N to
move to the next signal on the list.
Notice that SIG1 is now displayed in
the Name edit box.

Enter Dinput into the Name edit box
and press the OK button to close the
dialog.

The timing diagram should look like
the following.

Tip: The Signal Properties dialog is a modeless dialog - you can keep the dialog open while working
with other drawing features. The Boolean Equation and Simulation features of the Signal Properties
dialog are covered in the Simulated Signals tutorial .

(TD) 1.5 Drawing Signal Waveforms

Next, we will draw some random waveforms to become familiar with the drawing environment. The
timing diagram editor is always in drawing mode so left clicking on a signal will draw a waveform. The

36

SynaptiCAD Tutorials16

Copyright © 2011, SynaptiCAD Sales, Inc.

red state button controls the type of waveform that is drawn (high, low, tri-state, valid, invalid, weak
high, and weak low). The buttons toggle back an forth between two states, and the next state is
indicated by the little red T on top.

Draw and watch the State Buttons:

Move the mouse
cursor to about 40ns
and on the same level
as Qoutput. Notice
that the cursor has the
same shape as the
selected State Button.

Left Click to draw a
high waveform
segment from 0ns to
the cursor. Notice that
the State Button
toggled to low, and the
toggle T moved to the
High button.

Move the cursor to
about 80ns on the
same signal. Notice
that the cursor looks
like a low signal to
match the active state
button.

Left click to draw a
LOW segment. It is
drawn from the end of
the HIGH signal to the
location of the cursor

Draw with other state buttons:

Left click first on the Tri-state button then
on the Valid button, so that the Valid
button is red and the tri-state button has
the red toggle T on it.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 17

Copyright © 2011, SynaptiCAD Sales, Inc.

Draw some valid
and tri-state
waveforms, while
watching the
cursor shape and
the state buttons.

Draw more segments, using all the states except the HEX button. The HEX state button is
used in defining multi-bit signals and signals which have a user defined VHDL type. This
button is covered in later tutorials. For now, experiment with the graphical states.

(TD) 1.6 Editing Signal Waveforms

This section covers the main editing techniques used to modify existing signals (Note: these
techniques will not work on clocks, because they draw themselves). The most commonly used
technique is the dragging of signal transitions to adjust their location. Most of the other techniques all
act on signal segments, the waveforms between any two consecutive signal transitions. The segment
waveform can be changed, deleted, or a new segment can be inserted within another segment. Use
each of the following techniques:

1) Drag-and-Drop Signal Transitions:

Left click and hold down the mouse button on a signal
transition and drag it to the desired location.

To move transitions on different signals
simultaneously, first select multiple transitions by
holding the <CTRL> while clicking on edges. Then
drag a transition to desired location.

2) Click-and-Drag to insert a segment into a waveform or select to delete:

Inside of a segment, click and drag the
cursor to insert a segment

The inserted state is determined by the
red state button

Delete a segment: Select a segment (see above) and then press the delete key on the
keyboard.

SynaptiCAD Tutorials18

Copyright © 2011, SynaptiCAD Sales, Inc.

3) Change a segment's graphical state by selecting it and then pressing a state button:

Click in the middle of the segment to select it
(so that it has a green box around it).

Click on a state button to apply that graphical
state to the segment. If you change a
segment to the same state as an adjacent
section, the transition will turn red to preserve
the edge data. This transition can be deleted
if necessary.

4) Find the exact edge time and see how to lock an edge

Double-click on an edge of the signal transition to
open the Edge Properties dialog.

To move an edge, enter a new min or max time. An
edge only has one time until uncertainty is added
either by using a delay parameter or the min
uncertainty box in this dialog.

To lock an edge so that it cannot be moved, check
the Locked checkbox. If a delay ends on a locked
edge it will turn red if it cannot force the edge to the
proper time.

Note: All edges on a signal can be locked by selecting the signal name, and then choosing
the Edit > (Un)Lock Edges of Selected Signals from the main menu.

Make sure to unlock any signals or edges you locked in this tutorial, or else your delay in the
next section may not be able to force its ending edge.

5) Adjusting the drawing Grid

Drawn signal transitions are automatically aligned to the closest grid time. The grid does not affect
the placement of edges that are moved by delays or formulas. By default the grid is set to the display
time unit, because this generates nice VHDL and Verilog stimulus generation files with whole number
times (like 2ns instead of 2.465ns). However, it is sometimes convenient to set the grid to a multiple
of the clock frequency to make all new signal edges line up with the clock edges.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 19

Copyright © 2011, SynaptiCAD Sales, Inc.

Select the Options > Grid
Settings menu item to open
the Edit Text and Edge Grids
dialog.

You do not have to make any
changes to this dialog. Just
notice that you are able to
control the Signal Edge Grid
.

Also notice that text objects
have a different grid.

6) Adding virtual state Information to a segment

For Signals, double-click on the middle of
a segment to open the Edit Bus State
dialog, and then type in a new value into
the Virtual edit box.

For Clocks, press the Hex button and then double-click on the middle of the segment to open
the Edit Bust State dialog. If the Hex button is not pressed, the double-click will open a
different dialog to allow editing of the clock.

(TD) 1.7 Adjust Diagram to Match Figure

In the next few sections we will be adding the delays and setups to the timing diagram. It is best to
start with the waveform edges in the approximate position that they should be in when the timing
diagram is finished.

Adjust the Waveforms:

Use the editing techniques in the previous section so that the waveforms have roughly the
same transitions as the signals in the figure below.

SynaptiCAD Tutorials20

Copyright © 2011, SynaptiCAD Sales, Inc.

Minimize the Report Window and tile the Parameter and Diagram Windows:

Minimize the Report window because it is not
used in this tutorial.

Select the Window > Tile Horizontal menu
to tile the Parameter and Diagram windows so
that you will be able to see the interaction
between the two windows.

(TD) 1.8 Add the D Flip-Flop Propagation Delay

Add the delay that represents the propagation time from the positive edge of the clock to the Qoutput
of the D flip-flop. First we will add a blank delay between the edges and then we will edit it so that the
delay is named "DFFtp" and has a propagation delay of 5-18ns.

Add a blank graphical delay:

Press the Delay button so that right clicks will
add delays.

Left click on the first rising edge of the clock to
select it. This edge will be the first or driving
edge of the delay.

Right-click on the first falling edge of the
Qoutput signal, to add the delay between the
two edges. Since the delay is pointing to this
edge, this will be the edge that moves in
response to formula values entered into the
delay

Notice that D0 was also added to the Parameter window.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 21

Copyright © 2011, SynaptiCAD Sales, Inc.

Watch the delay as you change the min value:

When delays are added, they are blank and do not enforce any timing restraints. Notice that the
delay is drawn with gray colored lines: this indicates that the delay is not forcing either the min or
max edge of the Qoutput signal. Now edit the delay's parameters.

Double-click on D0 in either the Diagram or Parameter window to open the Delay Properties
dialog. For simplicity, we will refer to this dialog as Parameter Properties, even though the
name at the top may say Delay Properties or Setup Properties depending on the type of
parameter being edited.

Adjust the position of the Parameter
Properties dialog so that you can see
the parameter in the Diagram window
and at least part of the parameter in
the Parameter window.

Type 5 into the min edit box and
press the TAB key to move to the
max edit box (leave max blank for
now). This enters 5 display time units
(5ns for this timing diagram).

Several things happened when you pressed the TAB key:

The falling edge of Qoutput was moved
so that it is 5ns from the clock edge. If
you hover over the delay with the mouse,
blue boxes with the edge times will
appear so that you can check the edge
times.

Also note that the delay changed from a gray color to a blue color. Delays are color-coded to
indicate which delays are forcing the min and max edges of a transition. This type of critical
path display is necessary in diagrams where multiple delays drive a single signal transition.
The colors are: Gray = none, Blue = Min only, Green = Max only, Black = both min and max.
After this tutorial you may want to experiment with the multdely.btim file (in the Examples
directory) to see the effects of multiple delays on a single transition and critical path color
coding.

Finally, the parameter information also
was updated in the Parameter Window.

SynaptiCAD Tutorials22

Copyright © 2011, SynaptiCAD Sales, Inc.

Edit the rest of the delay:

Type DFFtp in the Name box.

Type 18 in the Max box.

In the Comment box, enter Ck to
Q propagation time.

Close the dialog when you are
done.

Notice that the DFFtp delay is
black which indicates that it is
forcing both edges of Qoutput.

Also notice the falling edge of
Qoutput now has a gray
uncertainty region. Double click
on the edge to verify that the
edges of the region are 5ns and
18ns from the clock edge (13ns of
uncertainty).

Tip: The Parameter Properties dialog is modeless (other operations can be performed while the
dialog is open) and interactive (any changes in the dialog fields are reflected in the diagram after you
move out of that field). When the Parameter Properties dialog is open you can edit a different
parameter by double-clicking in the Diagram or Parameter window on the parameter you want to
change. If you double-click in the Diagram window, that instance of the parameter will be edited (the
Change All Instances checkbox will NOT be checked). If you double click in the Parameter window,
ALL instances of the parameter will be edited (the Change All Instances checkbox will be checked).

(TD) 1.9 Add the Inverter Propagation Delay

Next add the delay that represents the propagation time of the inverter from its input Q to its output D.
Since this delay is the second in a chain starting with DFFtp, its uncertainty region will be larger than
just the uncertainty caused by the inverter.

Add the Inverter Delay:

Make sure the Delay button is red so that right
clicks will add delays.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 23

Copyright © 2011, SynaptiCAD Sales, Inc.

Left click on the first falling edge of the
Qoutput signal to select it (the same edge that
ends the "DFFtp" delay).

Right-click on on the first rising edge of the
Dinput signal to add a blank delay.

Double-click on the new delay to
open the Parameter Properties
dialog and enter the following
values: Name is INVtp, propagation
delay of 3 to 11 ns, and a comment
of Inverter (Q to D) delay.

Click on the OK button to close the
dialog.

Verify that the Uncertainty region is correctly calculated:

Notice the uncertainty region for the Dinput transition is much larger than the 3-11 ns that you entered
in the last step. This is because the DFFtp uncertainty adds to the INVtp uncertainty.

Click on the first rising edge of
Dinput (to select it). This also
moves the blue delta mark on the
time line.

Move the mouse cursor over the
second edge of the uncertainty
region. As you move the red line
on the time line tracks your
progress, and the Blue delta
readout shows the exact distance
from the blue delta mark.

Here the readout shows that the uncertainty region lasts for 21ns (13ns from DFFtp + 8ns from
INVtp = 21ns).

Next, click on the first edge of clk
and measure to the end of the
uncertainty region of Dinput. If both
the inverter and the D flip-flop are
slow, Dinput may not transition until
29ns after the clock edge.

SynaptiCAD Tutorials24

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 1.10 Add the Setup for the Dinput to Clock

One of the most important features of a timing diagram
editor is that setup and hold parameters can monitor pairs
of signals transitions to make sure that they do not violate
the timing constraints of the circuit. In this design, if Dinput
changes too close to a clock edge then there is a risk that
the flip-flop will go into a meta-stable state. We will use a
setup parameter to make sure the Dinput does not violate
the setup time for the clock.

Add a Setup parameter:

Press the Setup button so that right clicks will
add setups.

Left click on one of the rising edges of the
Dinput signal to select it.

Right click on the second rising edge of
the clock to add a blank setup between the
selected edge and this one.

Notice that the arrows of the setup are
pointing to the control signal. This means
that you added the setup correctly.

Double-click on the new setup
to open the Parameter
Properties dialog and enter the
following values: Name is
Dsetup, min time is 15, and
the comment is Check for
metastable condition.

Press the OK button to close
the dialog.

Notice that the margin column in the Parameter window says that there is a 6ns safety region before
the setup is violated. Verify this by clicking on the maximum edge of the Dinput signal (to place the
blue delta mark on the time line), then placing the cursor on top of the second rising edge of the
clock. The blue time readout should say 21ns (measured time 21ns - setup time 15ns = 6ns margin).

Cause the Setup to be violated:

Next, we will demonstrate what happens when a setup is violated by increasing the inverter's delay.

Double-click on INVtp to open the Parameter Properties dialog and change the max time to
18 ns. Then press the Apply button to apply the change.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 25

Copyright © 2011, SynaptiCAD Sales, Inc.

Notice that the setup has turned red in the Diagram window and that the Margin value of the
Parameter window has also turned red.

Change the inverter delay back to 11ns and click OK to close the dialog.

(TD) 1.11 Add a Free Parameter

So far we have always directly edited a parameter's values. This is inefficient and error prone if the
circuit is large. It would be better to define one variable that held the value and make everything that
needed that value reference this variable. Then if the value needs to be changed, you only have to edit
one variable.

Free parameters act as variables that can be referenced by other parameters. They are called "free"
because these parameters are not attached to any signal transitions in the Diagram window. Let's
add a free parameter to hold the propagation times for the inverter.

Add the free parameter:

In the Parameter window, press the
Add Free Parameter button to
create a blank free parameter.

Double click on the free
parameter to open the Parameter
Properties dialog box and enter
the following: Name is tpFreeInv
, min time is 3ns, max time is 11
ns, and comment is 74ALS04
inverter delay. (Leave the
dialog open).

SynaptiCAD Tutorials26

Copyright © 2011, SynaptiCAD Sales, Inc.

Make the dialog point to the
INVtp delay, either by pressing
the Previous button, or by
double clicking on INVtp.

Type tpFreeInv into the min and
max cells of INVtp and notice
that the calculated values show
the actual times. Any changes to
the timing values of the free
parameter will now affect this
delay.

Notice that the row for tpFreeInv
turned white to indicate that it is
being referenced by another
parameter.

Select the max value of INVtp in
the parameter window and notice
that the formula is displayed in
the box above.

You can make the parameter window display formulas in the table part by choosing the
Options > Parameter Window Preferences> Display min/max formula.

Using Formulas in the Parameter time boxes:

Parameters can contain mathematical formulas as well as numeric time values. Common operations
include multiplication(*), division(/), addition(+), and subtraction(-). For more information in the syntax
for formulas see the Timing Diagram Editor Manual Section 2.5 Time Formulas for Clocks and
Parameters. For example, the inverter in this circuit could represent 3 cascaded inverters used to
generate a minimum delay of 9ns. To represent this in your timing diagram:

Enter 3 * tbFreeInv into INVtp's
min edit box. Then tab to a new
box and see that the equation
correctly calculated 9ns.

Free parameter names can also be used with an attributed parameter name such as
tpFreeInv.min and tpFreeInv.max. This gives you the flexibility to specify formulas any way
you need. If no attribute is added then a min or max is assumed depending on whether the
formula is in the min or max column.

Create Libraries of Free Parameters:

Free parameters can be saved to special library files which can later be merged into other projects.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 27

Copyright © 2011, SynaptiCAD Sales, Inc.

You can also reference free parameters without including them into your project file by placing
libraries in your library search path (Libraries > Library Preferences menu option). For more
information on free parameters and libraries read the on-line help Chapter 10: Libraries or perform the
Parameter Libraries Tutorial .

(TD) 1.12 Drawing with Equations

We have finished with the timing analysis section of this tutorial, and next we would like to take the
time to show you a few more drawing techniques that will help you create and manage complex
timing diagrams. One such technique is to use equations to draw and label waveforms. Waveform and
label equations provide a quick way to generate signals that have a known pattern that is more
complicated than a periodic clock. WaveFormer (and higher editors) also support simulated signals
based on Boolean Equations which are covered in the Simulated Signal tutorial .

Use the Waveform Equation Feature:

The waveform equation box in the Signal Properties dialog accepts a list of time/value pairs, and the
default equation has all of the syntax and states that are supported by this box. Each time you press
the button more waveforms will be added on to the end of the signal.

Press the Add Signal button two
times to add two new signals to the
diagram window.

Double click on SIG0 to open the
Signal Properties dialog.

 Press the Wfm Eqn button to apply
the default equation to SIG0. This
equation shows the syntax for all
possible waveform types. Look at
the waveform and try to match it to
the different parts of the equation.

The first pair, 8ns=Z, causes an
8ns long tri-state segment to
be drawn.

The next terms, 5=1 5=0, draws a
5 ns long high segment followed by
a 5ns low segment, where the ns
is implied by the display time unit.
Enclosing it in (...)*5 causes the
sequence to be repeated 5 times.

The other pairs are interpreted in a
similar manner. The values H and L
draw weak high and low
waveforms, and V and X draw valid
and invalid sections.

We annotated the last sequence
using a setup parameter and
changing the display label from
name to comment.

90

36

SynaptiCAD Tutorials28

Copyright © 2011, SynaptiCAD Sales, Inc.

Use the Label Eqn Feature:

Label equations are used to automatically insert data on waveform segments. All of the equations are
listed in the label fly-out box. Here we will draw and label a counter signal that first counts up and
then counts down.

Double click on SIG1 to open the
Signals Properties dialog, then
use a waveform equation to draw
seven valid segments that are
10ns long.

Open the fly-out to the right of the
Label Eqn button and take a look
at the list of available functions.
Choosing any function puts it at
the end of the current label
equation, then you can edit the
parameters of the function call.

Functions can be concatenated
together by separating them with a
comma.

The Analog Label equations for
sine waves, capacitor functions,
and ramps are covered in the
Analog Signals Tutorial .

Use the Label equation quick-fill box and choose Inc then Concatenate and then Dec to add
those equations to the edit box.

Edit the parameters as shown, so
that the counter first starts from 0,
adds 1 each time, and counts up
for 4 cycles. Then make the
counter count down starting at 2,
for 3 cycles.

70

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 29

Copyright © 2011, SynaptiCAD Sales, Inc.

Press the Label Eqn button to
apply the equation.

(TD) 1.13 Drawing Virtual Busses

Buses are multi-bit signals. The timing diagram editor supports several different kinds of buses to
accommodate all the different ways signal information may be imported or exported from the tool.
Virtual and Group buses have the ability to be converted from one to the other type by right clicking
on the name.

Virtual Bus is a single signal defined as multiple bits. This is the most common and easiest
to work with because all of the normal signal editing techniques work on it.

Group Bus displays the aggregate values of its member signals. This is handy way to
manage lots of single bit signals that have been imported from other sources (like logic
analyzers).

Simulated Bus is a simulated signal defined as a concatenation of it member signals. This is
primarily designed for the testbench products so that both a member signal and the whole bus
can be passed to models as needed. This is covered in the Simulated Signals Tutorial .

Differential Signals are two-bit group buses that display a superimposed image of the
member signal waveforms. This can also be a useful technique for overlaying two analog
signals to compare them visually.

Draw a Virtual Bus:

Virtual Buses are the recommended way to display and work with bus information. Virtual Buses are
regular signals that have the LSB and MSB values set.

Add an 8-bit virtual bus named VirtualBus with an LSB of 0 and an MSB of 7 using one of the
following methods.

Fastest method: Make sure no
signals are selected, then click
the Add Bus button to open the
Add Bus dialog. Then select the
Virtual Bus radio and set the
MSB and LSB values.

Alternate method: Add a signal
and then double-click on the
name to open the Signal
Properties dialog. In the dialog
edit the edit the MSB and LSB
values.

You can sketch the virtual bus waveform using any of the graphical states, but normally virtual
buses are drawn with all valid states. Press the Valid state button twice so that it is red and
also has the red T on the top of the button. Then draw some consecutive valid states.

36

SynaptiCAD Tutorials30

Copyright © 2011, SynaptiCAD Sales, Inc.

Open the Edit Bus State dialog by either double-clicking on a segment OR first selecting a
segment and then clicking the HEX button on the button bar.

In the Virtual field, type in the segment value. This can by any type of data including text with
spaces (e.g., A0C, 5 + 3, blue level, and 24 are all valid virtual states).

Use Next and Prev buttons, or the <Alt>-N and <Alt>-P keys, to move between the different
segments on the same bus. When you are done press the OK button to close the dialog.

Investigate the Virtual bus using the Signal Properties dialog:

Double click on the
VirtualBus signal name to
open the Signal Properties
dialog.

On the bottom of the dialog,
notice the MSB and LSB
settings are the same as what
you typed in the Add Bus
dialog

Notice the Radix setting
which controls how the tool
interprets the data in the
virtual states of the waveform.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 31

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 1.14 Drawing Group Buses and Differential Signals

Group Buses display the aggregate value of their member signals. Normally, you would use them
after importing from a format that treated all signals like one-bit signals (like from a logic analyzer).
They are also used to create differential signals, which are just two bit group buses with some special
display settings. Before a group bus can be created, its member signals must either be specified by
selecting the signal names or new signals need to be created. We will use both methods in this
tutorial.

To create a group bus and its member signals:

Make sure that no signal names are selected (clear
selected signals by clicking in the Diagram window),
then press the Add Bus button to open the Add Bus
dialog. If signals are selected, they will become the
member signals of the bus (we will do that next).

Name the bus data and set the
LSB to 0 and the MSB to 1.

Check the Group Bus button.

Verify that the Hide member
signals check box is NOT
checked. We want to be able to
see the member signals in this
demonstration.

Press the OK button to close the dialog and create the bus. There should be 3 signals
generated: data (the bus), and data0 and data1 (the bus member signals). If the member
signals are not shown, use the View > Show Hidden Signals to show them.

Draw High and Low segments
on data0 then draw the
opposite on data1 (later we
will use these to make a
differential signal).

Notice that the edges in the
data bus are a little ragged
because the edges of the
member signals are not on
exactly the same times.

Select an edge on data and
choose the Bus > Align to
Group bus edge to snap all
the edges together. All the
edges can be locked together
by using the Bind menu.

SynaptiCAD Tutorials32

Copyright © 2011, SynaptiCAD Sales, Inc.

Note the bus edge can be
locked to the member edges
at a particular time by
selecting and edge and
choosing the Bind Group
Bus Edge menu as shown
above.

Note that you can edit the
data bus values by double
clicking on a segment to open
the Edit Bus State dialog and
changing the Hex or Binary
state (but not the virtual state).
The member signals change to
reflect the new value.

The red event on data0 preserves the edge on the member signal, so that you can make
consecutive changes in the bus values without stopping to add edges. To remove the red
events choose the Edit > Clear Red Events menu, but don't to it now. Just return the first
state to 1.

Creating a group bus from existing signals:

Here we will create a bus using existing signals by selecting the signal names in order from LSB to
MSB, then adding the bus. We will make a bus with the opposite order from the last bus.

Select data1 by clicking on the
name. This will be the LSB of the
new bus.

Select data0 by clicking on the
name. This will be the MSB of the
new bus.

Press the Add Bus button to
open the Choose Bus Type
dialog. Notice that the New Bus
dialog did not open up because
this bus will be automatically
created from the selected
signals.

Select the Group Bus radio button and click OK to close the dialog. Notice that a new bus,
data, was added to the diagram and that it has a different MSB and LSB than data.

Create a Differential Signal

Differential signals look best when the line type and color of one of the member signals is
different. Right click on the data0 signal and use the menus to change the signal color to
blue and the signal line type to dot.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 33

Copyright © 2011, SynaptiCAD Sales, Inc.

Double click on the
second data bus
to open the Signal
Properties dialog.

Check the Display
as Superimposed
signals so that the
signals will draw on
top of each other,
instead of the
normal state value
display.

Change Display
Label drop-down
to List of Signal
Names so that the
bus name is
replaced with the
list.

Press the Ok
button to close the
dialog and display
the bus as a
differential signal.

(TD) 1.15 Working with Drawing Environnment

Play with moving signals and zoom in and out of the diagram.

Move a single signal:

Select the signal clk by clicking on the name (a selected
signal will be highlighted).

SynaptiCAD Tutorials34

Copyright © 2011, SynaptiCAD Sales, Inc.

Click down and hold on the selected signal so that a
paper icon appears.

Drag the paper icon until it is between Qoutput and
Dinput, Then Drop the icon by releasing the mouse
button. Notice the timing diagram has redrawn itself.

Try dropping clk at the very top and at the very bottom of the diagram. Leave clk at the bottom
of the diagram.

Moving and reordering multiple signals:

When several signals are highlighted and moved as a group, they will reorder themselves according to
the order in which they are selected. This ability to quickly reorder signals by the order of selection
will help you deal with the large numbers of member signals of buses.

Hold the CTRL key while first selecting Dinput, then selecting Qoutput by left clicking on the
signal names in that order.

Move the signals to the bottom of the diagram. Notice that Dinput is above Qoutput because
that is the order in which they were selected.

Select Qoutput and then select Dinput (don't forget to use the CTRL key).

Move the signals to the top of the diagram. Notice that Qoutput is above Dinput, because the
signals were selected in that order. This is a quick way to reorder a large group of signals.

Return the signals to their original order, (clk, Qoutput, Dinput).

 Play with the Zoom Level

To zoom in and out quickly, hold
down the <Shift> key while using
the scroll wheel on your mouse.

<Shift> and mouse scroll wheel

To zoom in over a visible section,
drag and drop inside the Time
Line.

The zoom buttons are located on
menu bar in the diagram window
button or in the View menu.

The zoom in (+) and zoom out (-)
center the zoom on the selected
item, the blue delta mark, or the
center of the diagram in that order.

The zoom full (F) displays the entire timing diagram on the screen.

The zoom range (R) opens a dialog that lets you specify the starting and ending times for the
zoom.

Timing Diagram Editor 1: Basic Drawing and Timing Analysis 35

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 1.16 Summary

Congratulations! You have completed the Basic Drawing and Timing Analysis tutorial. In this
tutorial we covered how to create a timing diagram, drawing simple signals and clocks, basic timing
analysis with delays and setups, and advanced drawing techniques using equations and buses.

What to do next:

If you will be doing lots of timing analysis, you need to read Section 5.1 Delays in the Timing
Diagram Editor menu to find out about delay correlation and how delay times are calculated.

If you will need to make timing diagram documentation, then do the Display and Documentation
 tutorial.

If you are purchasing WaveFormer Pro or Data Sheet Pro, then do the Simulated Signals
tutorial to discover the fastest way to generate timing diagrams.

If you are working with analog signals, then do the Analog Signals tutorial.

If you are going to be working with lots of timing parameters, do the Parameter Libraries tutorial
 to learn about making libraries.

53

36

70

90

SynaptiCAD Tutorials36

Copyright © 2011, SynaptiCAD Sales, Inc.

Timing Diagram Editor 2: Simulated Signals

Simulated Signals reduce the amount of time needed to draw and update a timing diagram, because
the waveform is described using a Boolean or registered logic equation. With Simulated Signals you
will no longer have to figure the output of a combinational circuit or calculate the critical path of a
synchronous circuit by hand. WaveFormer Pro has an internal interactive simulator that supports
multi-bit equations with true min-max timing, unlike traditional simulators that can only represent
single-valued delays. This tutorial contains some simple examples of Boolean and registered logic
equations that showcase the simulator's capabilities.

To do this tutorial, you will need WaveFormer Pro or a higher level product. SynaptiCAD has also
included Simulated Signals with the VeriLogger and TestBencher products, even though they have a
built-in Verilog simulator, because this feature makes it easier to generate test benches and timing
diagrams. In WaveFormer, it is the backbone of the timing analysis and design features.

This tutorial assumes that you are able to draw signals and can add delays, setups, and holds to
those signals. We recommend that beginners start with the Basic Drawing and Timing Analysis
Tutorial to learn the basics of timing diagram editing before attempting this tutorial.

(TD) 2.1 Setup for Simulation

In the next few sections we will simulate signals using Boolean and registered logic equations. The
inputs to a simulated signal are other drawn signals, so in this section we will create a timing diagram
and a free parameter that we will use in the subsequent steps.

Run WaveFormer Pro or higher:

Run WaveFormer Pro, DataSheet Pro, VeriLogger, or one of the more advanced products. If
you are evaluating Timing Diagrammer Pro or one of our Viewers and you would like to learn
about the simulation features, close the program and restart the evaluation version in

10

Timing Diagram Editor 2: Simulated Signals 37

Copyright © 2011, SynaptiCAD Sales, Inc.

WaveFormer Pro mode.

Create a Timing Diagram:

Choose File > New Timing Diagram menu to open an empty timing diagram window.

Hide the direction and index columns
in the diagram window by choosing
Options > Drawing Preferences to
open the dialog. Then uncheck Show
Direction Icons and Show Index.

Sketch the following timing diagram. Clock CLK0 has the default 100ns period. Just
approximately sketch the waveforms for SIG0 and SIG1; exact edge placement is not
necessary for this tutorial. Leave SIG2 blank, because it will be the simulated signal.

Create a Free Parameter:

We will also be experimenting with the min and max timing features of the Boolean equations, so
create a Free Parameter to use in the equations.

In the Parameter window, press the Add Free
Parameter button to add a free parameter F0.

Double-click on F0 to open the
Parameter Properties dialog.

Enter a min time of 10, and a
max time of 15, then press the
OK button to close the dialog.

SynaptiCAD Tutorials38

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 2.2 Simulate a Boolean Equation

A simulated signal is created by adding a Boolean equation to the Signal Properties dialog for that
signal. The dialog accepts Boolean equations in either VHDL, Verilog, or SynaptiCAD's enhanced
equation syntax. The SynaptiCAD format supports the following operators: and or &, or or |, nand,
nor, xor or ^, not or ~ or !, and delay. We will cover the delay operator in the next section.

Simulate a Boolean equation once:

Double click on the SIG2 signal
name to open the Signal
Properties dialog. Move the dialog
so that you can see the dialog and
the 3 signals at the same time.

Enter SIG0 and SIG1 into the edit
box below the Boolean Eqn type
box (signal names are case
sensitive).

By default, all signals are Drive
signals that will only simulate
when the user presses the
Simulate Once button.

Click the Simulate Once button at the top of the dialog and watch the signal draw itself.
Notice that SIG2 is the result of the Boolean Equation "SIG0 and SIG1". SIG2 is drawn in
black to indicate that it will not re-simulate automatically.

Continuously Simulate the Boolean Equation:

First make sure the program is in the continuously simulate mode:

If you are using WaveFormer, then check the Options > Diagram Simulation
Preferences menu to make sure that the Continuously Simulate box is checked.
WaveFormer does not have the Auto Run/Debug Run button.

If you are using VeriLogger Pro or TestBencher Pro, make sure that the program is in
Auto Run simulation mode. Debug Run mode will not continuously update signals. The
Auto Run/ Debug Run simulation mode button is located on the simulation toolbar, in
the upper left of the window below the Project menu.

Timing Diagram Editor 2: Simulated Signals 39

Copyright © 2011, SynaptiCAD Sales, Inc.

To make the signal
continuously simulate, check
the Simulate signal type
button.

Notice that the SIG2 is now drawn in purple. This color means that the signal is being
continuously simulated, and changes in the input waveforms cause automatic re-simulations.

Move some of the edges on SIG0 and SIG1 and watch SIG2 re-simulate. (Notice that you
cannot drag and drop SIG2's signal edges because they are calculated edges).

(TD) 2.3 Boolean Equations with Delays

Next we will modify the Boolean equation to take into account the propagation delay through the AND
gate. First we simulate a simple 15ns delay, then we will simulate a min/max delay. The
SynaptiCAD delay operator takes a signal on the left, and a time or parameter name on the right,
and returns a signal. If a parameter name is used on the right hand side of the delay operator, then
the equation will simulate true min/max timing. This true min/max timing is the main advantage that
SynaptiCAD's format has over the VHDL or Verilog format.

Simulate a simple delay:

Add a 15ns delay to the SIG2
Boolean equation. The box
accepts Verilog, VHDL, or
SynaptiCAD syntax, so these
equations are all equivalent to each
other.

Press the Apply button at the
bottom of the dialog to notify the
simulator about the change in the
equation.

#15 (SIG0 & SIG1)

(SIG0 and SIG1) after 15

(SIG0 and SIG1) delay 15

Verify that SIG2 is 15ns delayed,
by first selecting an input edge
then moving the mouse over the
resulting edge on SIG2. The blue
delta read out will say 15ns.

Simulate a true min/max delay using SynaptiCAD syntax:

The most powerful feature of a timing diagram editor is the ability to display min/max timing using the

SynaptiCAD Tutorials40

Copyright © 2011, SynaptiCAD Sales, Inc.

grey uncertainty regions. To make the Simulated Signals support min/max timing, we created the
SynaptiCAD delay operator, because the delay operators in VHDL and Verilog only support a single
delay.

Edit the equation so that the
delay references the free
parameter F0 then press the
Apply button to notify the
simulator about the change in the
equation.

Notice that SIG2 has grey
uncertainty regions that are
5ns wide (F0.max - F0.
min).

View the HDL code that models the Boolean equation:

The timing diagram editor takes the Boolean equation and generates Verilog or VHDL code
necessary to perform the equation. You can edit this code directly to perform more complex
functions. The tool ships with an embedded Verilog simulator that executes the code, so if you
change VHDL code you will have to provide the tool with a VHDL simulator. The manual explains how
to configure for a different simulator.

Press the Verilog tab to open an editor window that displays the generated Verilog code. Do
not change the code now.

This example demonstrated true min/max simulation, however Min-Only and Max-Only
simulations can be performed by changing the selection in the Timing Model drop-down list
of the Simulation Preferences dialog box. The Simulation Preferences dialog can be opened
using the Options > Diagram Simulation Preferences menu option. The Timing Model
drop-down list is in the upper right corner.

(TD) 2.4 Register and Latch Signals

The Interactive Simulator can register or latch the result of a Boolean equation. This circuit is similar
to most FPGA cells and can model a large number of components. Below is a figure of the register
that a Simulated Signal models. If no clocking signal is chosen, then the Boolean equation goes
straight to the signal output as shown in the previous sections. Note: setting the MSB/LSB fields in
the Signal Properties dialog will "parallelize" the circuit, allowing multi-bit registers such as counters,
shifters, etc. to be modeled.

Timing Diagram Editor 2: Simulated Signals 41

Copyright © 2011, SynaptiCAD Sales, Inc.

Experiment with the register and latch equations:

Change the SIG2
equation to just one term
SIG1 and press the
Simulate Once button.
SIG2 should be an exact
copy of SIG1.When we
register SIG2 you can
visually compare it to
SIG1 to see the effects of
the register.

Set the clock control to CLK0.
Choosing a clock brings in the
register/latch model to buffer the
Boolean equation.

Set the edge/level control to both, to
indicate that both the rising and
falling edges of the clock are
triggering edges. Since it is edge
triggered a register circuit will be
created rather than a level sensitive
latch.

Click the Simulate Once button to simulate the circuit. Notice that SIG2 only transitions
when CLK0 has a positive or negative edge transition (move some edges on SIG1 to verify
this).

SynaptiCAD Tutorials42

Copyright © 2011, SynaptiCAD Sales, Inc.

To make the diagram
look like the above
picture, we hid SIG0
because it is not
being used.

We also added Grid
Lines to every edge
of the clock. To do
that double click on
the clock name to
open the Signal
Properties dialog and
press the Grid Lines
button. This opens
the Grid Options
dialog. Play with the
controls and hit
Apply until you get
an image that you
like.

(TD) 2.5 Set and Clear Lines

The Set and Clear lines are useful when defining circuits whose initial value needs to be specified. In
this example we demonstrate how to design a divide by 2 circuit using a negative edge triggered
register with an asynchronous active-low set line.

Timing Diagram Editor 2: Simulated Signals 43

Copyright © 2011, SynaptiCAD Sales, Inc.

Use the Set line to define an initial state:

Click the Add Signal button to
create a new signal named SIG3.
Then double click on the signal
name to open the Signal
Properties dialog.

Check the Simulate button.

Type !SIG3 into the Boolean
Equation edit box (it references
itself).

Choose CLK0 from the Clock drop
down list box.

Choose neg from the Edge/Level
box.

Notice that the waveform for SIG3
is completely gray but that the
status bar (in the lower right corner
of the window) reports Simulation
Good. This is because SIG3's
Boolean equation references itself
but it does not provide the
simulator with a known start state.

Press the Advanced
Register button to open the
Advanced Register and
Latch Controls dialog.
Notice that the register and
latch propagation, setup,
and hold times, clock
enable, and set/clear
options are set here. Tip: the
Global defaults are set using
the Options > Simulation
Preferences menu.

Make sure the Active Low and the Asynchronous check boxes in the Set and Clear section
are checked. Click OK to close the dialog.

SynaptiCAD Tutorials44

Copyright © 2011, SynaptiCAD Sales, Inc.

Choose SIG0 from the Set drop
down list box.

If you hid SIG0 in a previous
section, choose the View > Show
and Hide Signals menu to show
SIG0.

Press the Simulate Once button
to notify the simulator of the change
in the model.

Notice that SIG3 now has a
simulated waveform. Redraw
SIG0 so that it goes low
early in the timing diagram,
and then stays high for four
or five clock cycles.

Experiment with SIG0 to see how the active low set line affects the operation of the flip-flop.
Remember that we set the model to have an asynchronous low set signal.

To make the above diagram, we hid the unused signals. We also changed the clock grid so
that the starting event was 2 and there were 2 events per line, that way we got grid lines on
just the negative edges.

(TD) 2.6 Multi-bit Equations

The Interactive Simulator can automatically generate multi-bit equations for the register, latch and
combinatorial logic circuits. To convert a register or latch circuit into a multi-bit signal, change the
MSB of the input signal and the MSB of the register or latch. If the sizes of the signals do not match,
WaveFormer maps as many LSB's as it can. The following example uses only a simple equation to
demonstrate the LSB mapping feature, however multi-term Boolean equations are completely
supported.

Create a Multi-bit Signal by changing the MSB setting:

Create a copy of SIG2. Click on the
SIG2 name in the Label window to
select it. Select the Edit > Copy Text
and Signals menu option to copy the
signal, then the Edit > Paste option to
paste the signal. There are now two
signals named SIG2 in your diagram.

Timing Diagram Editor 2: Simulated Signals 45

Copyright © 2011, SynaptiCAD Sales, Inc.

Double click on the bottom
SIG2 to open the Signal
Properties dialog, and rename
the signal to SIGX.

Type 3 in the Bus MSB edit
box. This will make SIGX a 4-
bit signal and add a [3:0] to
the end of the name.

Press the Apply button to
notify the simulator of the
changes.

SIGX's waveform is now drawn as a bus with
a 4 bit binary display. Only the LSB of SIGX
is working because the input signal SIG1 is a
single bit. Compare SIG2 and SIGX and verify
that they are the same values.

Change the input signal to a multi-bit signal:

Double-click on SIG1 to open the
Signal Properties dialog, and add
[3:0] to the end of the name. This
has the same effect as changing the
values in the MSB and LSB edit
boxes.

Press the Apply button. Now all four
bits of SIGX should be toggling
between 0 and F. If the radix is in
Binary, the signal will toggle1111
and 0000. The radix box is located
in the lower left part of the dialog.

If you want to further experiment with multi-bit signals, change SIG1's graphical segments to
Valid regions instead of Highs and Lows. Then double click on a valid region to open the Edit
Bus State dialog box. Type different hex values from 0 through F, like 5 or A, into the Virtual
edit box and watch how it affects the output of SIGX and SIG2. Since SIG2 is a single bit
signal it uses only the LSB of the input signals.

SynaptiCAD Tutorials46

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 2.7 Design a Multi-Bit Counter

When a muti-bit signal is clocked the register/latch circuit shown will be instantiated one time for
each bit of the signal. This allows you to use one signal to represent the operation of a multi-bit
counter or buffer.

Use a multi-bit signal to make counter:

Press the Add Signal button to add
a new signal.

Rename the signal to
four_bit_counter.

Set the type to simulate.

Type in the equation
four_bit_counter +1.

Set the clock to CLK0 with an
trigger edge of pos. This will make
the signal change only on the
positive edges of the clock.

Set the clear line to SIG0. If you
press the Advanced Register
button you can verify that the clear
line with be active low and
asynchronous, so that a pulse low
on this line will clear the signal
registers to zero.

Set the Msb to 3 to instantiate the
multiple registers.

Press the Apply button to simulate the signal. Notice that the signal will be a grey unknown
region until the SIG0 goes low to clear the register.

If you press the Verilog tab, in the Signal Properties dialog you can see that the register is
going to be 4 bits wide (it is the first parameter that is passed into the register).

Timing Diagram Editor 2: Simulated Signals 47

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 2.8 End Diagram Marker Stops Simulation

Normally the simulation will continue to the end of the last drawn signal or about one clock cycle past
the drawn signal. However, the exact end of simulation can be controlled using Marker line.

Use an End Diagram Marker to control the end of simulation time:

Press the Marker
button so that right
clicks will add marker
lines to the diagram.

Right click inside the diagram window to add a Marker line. By default all new markers are
just documentation lines that will not effect the timing or simulation of the diagram.

Double click on MARK0 to open
the Edit Time Marker dialog.

Set the type to End Diagram. But
also notice all the other types
available. The timebreak types
compress time and hide parts of
the dialog. The loop markers are
used by TestBencher and Reactive
Test Bench generation to create
complex test bench code.

Set the display label to Type. This
will make the marker display its
type instead of its name. Also
notice all the display label options
to control exactly what the marker
displays.

Press the Ok button to close the
dialog

Notice that the simulation ends at the clock cycle after the End Diagram Marker. Grab the

SynaptiCAD Tutorials48

Copyright © 2011, SynaptiCAD Sales, Inc.

marker with the mouse and drag it around to control the simulation end.

(TD) 2.9 Behavioral HDL Code

In addition to the simulation of Boolean and registered logic circuits, SynaptiCAD products can
simulate behavioral Verilog code, and if you provide a VHDL simulator it can also simulate behavioral
VHDL code. The behavioral code is entered directly into the Verilog or VHDL tabs in the Signal
Properties dialog, instead of using the Equation Entry tab that we used for the Boolean equations in
the last sections. There is also a template feature that generates code from a Boolean equation and
allows you to modify the generated code.

In this section we will use a register template as a starting point to build a circuit that asynchronously
counts the number of edges that occur on SIG1 and synchronously presents the total number of
edges on the positive edge of the clock.

Timing Diagram Editor 2: Simulated Signals 49

Copyright © 2011, SynaptiCAD Sales, Inc.

Use a partially defined signal to generate PLACEHOLDER code:

Add a new signal named Count.

Select the Simulate type setting.

Set the clock to CLK0 with an
edge/level of pos.

Set the MSB to 3.

Press the Apply button to apply
the changes and generate the
code. Since there is no Boolean
equation for the signal, this is also
going to generate a compile error
and all the simulated signals in the
diagram will go grey. If no compile
error happens, then choose
Options > Diagram Simulation
Preferences menu and check the
Continuously Simulate box.

Next, press the Verilog tab to open an editor window containing the the template code. The
internal wire names Count_wf*** will vary depending on how many signals you have simulated.

The registerP_Asyn line instantiates (defines an instance of) a 4 bit positive-edge-triggered
register of the type used by the logic wizard. This register takes PLACEHOLDER as an input
and outputs a synchronized version on Count.

The auto generated variable PLACEHOLDER is undefined and will not simulate. If a Boolean
equation was defined for the circuit, it would replace the PLACEHOLDER variable. This error
will be displayed in the Report window under the error tab.

SynaptiCAD Tutorials50

Copyright © 2011, SynaptiCAD Sales, Inc.

Add behavioral code to the generated code:

We will use the PLACEHOLDER variable to store the edge count. First we will define
PLACEHOLDER, give it an initial starting value, then define an always process that triggers each
time the SIG1 changes. Since Count is buffered by a positive edge triggered register, it will not
display the PLACEHOLDER value until the positive edge of the clock.

Either copy-and-paste or type the first four lines the below code directly into the Signal
Properties Verilog Code window (add the bold lines):

reg [3:0] PLACEHOLDER;
initial PLACEHOLDER = 0;
always @(SIG1)
 PLACEHOLDER = PLACEHOLDER + 1;
wire [3:0] Count_wf1 = PLACEHOLDER;
wire [3:0] Count_wf0;
registerP_Asyn #(4,1,1) registerP_Asyn_Count(Count_wf0,
 CLK0,Count_wf1,1'b0,1'b1,1'b1,
 $realtobits(0.0),$realtobits(0.0),
 $realtobits(0.0),$realtobits(0.0));
assign Count = Count_wf0;

Click the Apply radio button. Verify that Count is counting the edges of SIG1. The new edge
count is presented on each positive edge of CLK0. The Count starts at one because there is a
1'bz to 1'b0 transition at time zero on SIG1.

Code explanation:

The code that you just entered is behavioral Verilog code.

The first line defines PLACEHOLDER as a 4-bit register. PLACEHOLDER needs to be defined
as a register rather than a wire in this case because it must "remember" its value. Verilog
wires don't remember their values so they must be constantly driven to retain their value.

The second line initializes the value of PLACEHOLDER to 0 when the simulator first runs.

The third and fourth lines contain an always block (note for VHDL users: these work like VHDL
process blocks). Whenever SIG1 changes state, the always block will execute, incrementing
PLACEHOLDER.

The rest of the lines consist of the automatically generated template code that instantiates the
synchronizing register.

(TD) 2.10 Simulated Bus Signals

Simulated Buses are similar to Group Buses. The primary difference is that the bus is generated
using a Boolean Equation. A simulated bus can be referenced in another signal's Boolean equation,
(group buses cannot). Also, TestBencher will generate a Boolean equation for the timing transaction
so that the simulated bus can include input signals as member signals.

Timing Diagram Editor 2: Simulated Signals 51

Copyright © 2011, SynaptiCAD Sales, Inc.

Create a Simulated Bus:

Make sure that no signals are
selected, and press the Add Bus
button to open the Add Bus dialog.
Note, if a signal was selected a
different dialog will open and you
cannot add a simulated bus from
there.

Set the LSB to 0 and the MSB to 2
.

Select the Simulated Bus radio
button.

Press the OK button to close the
dialog and create the bus and
member signals.

BUS0''s waveform will be grey
because none of the member
signals are defined.

Draw on the member signals and
see the bus simulate.

Double click on BUS0[2:0] label to
open the Signal Properties dialog.
Notice that the bus is defined as a
concatenation of the member
signals.

SynaptiCAD Tutorials52

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 2.11 Summary of Simulated Signals Tutorial

Congratulations! You have completed the Simulated Signals tutorial. In this tutorial, you have used a
Boolean Equation to define the waveform of a signal, and experimented with the delay operator and
multi-bit equations. You have also worked with the internal register and latch circuits and the template
function for generating a starting point for writing behavioral code. And fininally you have generated a
simulated bus.

For more information on simulated signals and the internal simulator look at:

Chapter 4: Simulated Signals and VHDL and Verilog Export in the Timing Diagram Editor
manual.

Advanced Modeling and Interactive Simulation Tutorial demonstrates how to model a
complex circuit using external models, behavioral HDL code, and incremental simulation
techniques.

If you currently own Timing Diagrammer Pro or one of the SynaptiCAD Viewers, then these products
can be upgraded to WaveFormer Pro or Data Sheet Pro so that you will have access to the Simulated
Signal features.

98

Timing Diagram Editor 3: Display and Documentation 53

Copyright © 2011, SynaptiCAD Sales, Inc.

Timing Diagram Editor 3: Display and Documentation

This tutorial introduces techniques for controlling the display of parameters, clocks, waveforms,
markers and text objects. These techniques will allow you to control exactly what your timing
diagrams look like and what information is displayed.

It is recommended that you become comfortable drawing waveforms and adding parameters before
you begin this tutorial by first performing the Basic Drawing and Timing Analysis tutorial.

(TD) 3.1 Setup for the Tutorial

Since this tutorial focuses on how to make the timing diagram look different, we will save some time
by loading a pre-drawn timing diagram.

Load the starting timing diagram for this tutorial:

Open the file tutdocstart.btim in the
SynaptiCAD\Examples\TutorialFiles\DisplayAndDocumentation directory.

Select the File > Save As menu option, and save this file as mystart.btim.

10

SynaptiCAD Tutorials54

Copyright © 2011, SynaptiCAD Sales, Inc.

Hide the Direction and Index Columns in the Label window:

Choose the Options > Drawing
Preferences menu to open the
dialog. Then uncheck Show
Direction Icons and Show Index.

(TD) 3.2 Parameter Display Strings

A Delay, Setup, Hold, or Sample parameter can display any of its attributes like name, times,
distances, margin, comment string or any combination of attributes. A parameter's display is
controlled by the the Display Label and Custom String boxes in the Parameter Properties dialog.
Even though all parameters have these features, usually Setups and Holds are used for diagram
annotation and distance measurements, because these parameters monitor state information instead
of forcing edges like delay parameters. In this section, we will edit the three parameters in the
diagram and write some custom strings.

Display anything using a Parameter Custom Strings

A parameter label can be made to show more than one attribute or to show a custom string of
characters and attributes using the Custom string in the Parameter Properties dialog.

Double click on D0 delay
parameter to open the
Parameter Properties dialog.

Select Custom from the Display
Label drop-down list box. This
will cause the string in the
Custom edit box to be displayed
as the parameter's label. The
default custom string is a little
messy to look at, however it
contains all of the control codes
so you don't have to remember
them. When you want to make a
custom label just edit the default
string.

Compare the default Custom string to the label that is displayed in the diagram. The default
custom string should be:

%n v= %mv,%Mv f=%mf,%Mf m=%mm,%Mm d=%md,%Md %c

Notice the codes that start with a % character followed by one or two letters are replaced in
the label and all other text is just shown. The control codes are: name (%n), value (%mv, %Mv
), formula (%mf, %Mf), margin (%mm, %Mm), distance (%md, %Md), and comment (%c). The
lower case m means minimum, and the upper case M means maximum. The example
parameter D0 is a delay, so the margin control codes %mm and %Mm are blank. Also since
there is no "comment" for D0 it is also blank.

Timing Diagram Editor 3: Display and Documentation 55

Copyright © 2011, SynaptiCAD Sales, Inc.

Next, make the parameter label
display only the parameter name and
min and max values. Edit the contents
of the custom string so that the string
reads:

%n value = %mv,%Mv

Press the Apply button and D0’s label
will show. (LEAVE THE DIALOG
OPEN).

Display Margin times using a Setup or Hold:

There are also several default display labels that you can quickly use to display an attribute.

Double-click on the setup label S0 to
open the Parameter Properties
dialog. Arrange the dialog so that
you can see the S0 in the diagram
window and the dialog at the same
time.

Use the Display Label drop-down
list box to select the min/max
Margin display. Notice that the label
for the parameter now displays [9,],
the min/max margin, instead of the
name S0. This display will change if
the setup’s edges are moved. The
max is blank because there is no
maximum setup time specified in the
parameter.

If you do not want to display the
maximum then you can create your
own custom string. Here the code %
mm will be replaced by the minimum
margin time and all other text will be
output as typed. (LEAVE THE
DIALOG OPEN).

Display Distance measurements using a Setup or Hold:

Click the Next button to display the setup S1 in the Parameter Properties dialog. We will just
use S1 to display the distance between two edges, so we have not bothered to define min and
max values for it.

SynaptiCAD Tutorials56

Copyright © 2011, SynaptiCAD Sales, Inc.

Check Outward Arrows so that the
parameter’s arrows display the type
of arrows that are usually used for
distance measurements.

Select the Distance from the
Display Label drop-down list box.
The label now shows the minimum
and maximum distances between
the transitions.

This can also be achieved using a
Custom string <%dm, %dM> as
shown in the previous example.

Press Ok to close the dialog.

Miscellaneous Parameter Information:

The default display for all parameters can be set using the Options > Drawing Preferences dialog
box. Also individual instances or all instances of a parameter are configured depending on where the
Parameter Properties dialog is opened. To edit an individual instance, double click on a parameter in
the Diagram window. To configure all instances of a parameter, double click on a parameter row in
the Parameter window.

(TD) 3.3 Repeat Parameters Across the Diagram

Once you have drawn a delay, setup, or hold parameter, that parameter can be automatically drawn
between similar edges across the timing diagram. When the Repeat button, in the Parameter
Properties dialog, is pushed the program will search for the next beginning edge, and add a parameter
between that edge and the next ending edge. This will continue until the end of the diagram. Some
caution should be taken when repeating delays because the delays cause edges to move.

Repeat D0 across the timing diagram:

For this demonstration arrange Diagram window so that you can see the entire diagram. You
may need to use the zoom-in buttons.

Timing Diagram Editor 3: Display and Documentation 57

Copyright © 2011, SynaptiCAD Sales, Inc.

In the diagram window, double-click
on D0 to open the Parameter
Properties dialog.

Press the Repeat button. This will
cause delays to be added to each of
the falling edges of SIG0 that have a
matching edge on SIG1.

Also notice that the margin for setup S0 is now violated and is displayed in red. This happened
because the second D0 moved the edge on SIG1 that S0 is attached to.

Close the Parameter Properties dialog.

(TD) 3.4 Move Parameters to Different Signals

A delay, setup, hold, or sample parameter can be moved to a different signal transition by dragging
and dropping one of the parameter end-points.

In the Diagram window, select the first
delay parameter D0 clicking on it. A
selected parameter is surrounded by a
rectangle with a solid handle box on either
end.

Drag and Drop the black handle the right
side of the selection rectangle to the first
edge on SIG2 as indicated. If the entire
parameter is changing its vertical
position, then you clicked on the middle
of the parameter instead of a handle box.

(TD) 3.5 Adjust Parameter Vertical Placement

Normally, the vertical placement for parameters on the sreen is set automatically. However, you can
also place parameters at a specific height by dragging the parameter to a new position.

SynaptiCAD Tutorials58

Copyright © 2011, SynaptiCAD Sales, Inc.

Click down on the center of the first
delay parameter, D0, and drag it up
to a new vertical position closer to
the top of the screen.

Release the mouse button to place
the parameter.

After you move a parameter, it is considered user placed and it will not be moved from that position
unless you choose to move it. Any new parameters will arrange themselves around user placed
parameters. To return vertical placement control to the program:

Open D0’s Parameter Properties
dialog box by double-clicking on the
parameter.

Uncheck the User Placed box, to
return placement control to the
program.

Press the OK button to close the
dialog and watch how the delay
returns to its default position.

(TD) 3.6 Curved Parameters

By, default parameters are drawn using straight lines, however you can make them have a curved
line.

Double click on the
second D0 in the diagram
to open its Delay
Properties dialog.

Since the Change all
instances is unchecked
all changes made in this
dialog will only effect this
instance of D0.

Check Display as
Curved Arrow to make
the delay redraw as as
curved arrow.

Timing Diagram Editor 3: Display and Documentation 59

Copyright © 2011, SynaptiCAD Sales, Inc.

Next, click on the
parameter to select it and
display the black curve
points.

You can change the
curve by dragging and
dropping a curve point.

You can add or delete
curve points by right
clicking on the curve
and choosing the Add
Curve Point or Delete
Curve Point menu.

If you add a curve point
near the arrow head of
the parameter, you can
use it to control the
angle of the arrow head.

For our final edit, we
moved both curve points
so that the delay looks
more flashy. We also
returned Display Label
to Name in the Delay
Properties dialog.

(TD) 3.7 Clock Jitter and Display

Clocks have many display and timing analysis settings that are covered in Timing Diagram Editor
Manual Chapter 2: Clocks. All features that affect the timing analysis calculations for clocks are
edited through the Edit Clock Parameters dialog. Features that only affect how the clock looks are
reached through the Signal Properties dialog. In this section we will add edge jitter and see the effect
on the distance measurement. We will also add arrows to the falling edge of the clock, change the
slant of the waveform edges, and add grid lines to the clock.

SynaptiCAD Tutorials60

Copyright © 2011, SynaptiCAD Sales, Inc.

Add edge Jitter with the Edit Clock Parameters dialog:

Double click on waveform segment on
CLK0 to open the Edit Clock Parameters
dialog.

Type 4 into the Rise Jitter (range) edit
box and tab to another control, and press
the Ok button to close the dialog.

Notice the rising edges of the clock now
show 4 ns of uncertainty.

Also notice that the distance
measurement shows the uncertainty with
<48,52>, instead of the <50,50> display.

Add arrows, straight edges, and grid lines using the Signal Properties dialog

Double click on the CLK0 signal
name to open the Signal Properties
dialog.

Check the Falling Edge
Sensitive box and push the Apply
button. This causes arrows to be
added to the falling edge of the
clock.

Next, press the Analog Props
button to open the Analog
Properties dialog.

Check the Use Straight Edges box and press OK to close the analog dialog. This will cause
the clock to be drawn with straight edges instead of the normal slanted edges.

Timing Diagram Editor 3: Display and Documentation 61

Copyright © 2011, SynaptiCAD Sales, Inc.

Next, press the Grid Lines button to
open the Grid Options dialog.

Check the Enable Grid box and press
the Apply button. This draws grid lines
on the clock.

Play around with the grid options and
make the grid draw on different edges.
Also draw different color grids and line
styles.

(TD) 3.8 Marker Time Compression

Time markers (vertical lines) can be added to a timing diagram for documentation, time compression,
and to indicate the end of the diagram.

Add a Time Compression Marker.

Press the Marker button so that right
clicks will add markers to the diagram.

Left click on the third falling edge of CLK0
(250ns), to select it, and then right click to
add a Marker attached to that edge.

SynaptiCAD Tutorials62

Copyright © 2011, SynaptiCAD Sales, Inc.

Double click on the marker to open the Edit
Time Marker dialog.

Choose Timebreak(Curved) from the Type
box to make the marker use a double curved
line display.

The Attached to display shows whether the
marker is attached to a time or an edge. Since
an edge was selected when you added the
marker it was automatically attached to the
selected edge.

Uncheck the Draw line from marker to edge
box. When marker is attached to an edge, this
box determines if a dotted line will be drawn
between the edge and the marker.

Uncheck the Display Signal States so that
the marker does not try to display the
waveform values of the signals that are
underneath it.

In the Display Label box, choose Comment.
Since the comment for the marker is blank, no
label will be displayed for the marker.

Press OK to close the dialog. Notice that the
marker is curved and does not display its label.
See picture below on the left

Double click on the marker to open
the Edit Time Marker dialog again.

Type 15 into the Time Break
compresses time by box and press
OK to close the dialog.

Notice in the above picture that 15ns of the next clock cycle is not displayed in the diagram. All

Timing Diagram Editor 3: Display and Documentation 63

Copyright © 2011, SynaptiCAD Sales, Inc.

the parameters inside a compressed region continue to function,but part of the diagram is not
shown.

Drag and Drop the Marker around the diagram and watch objects disappear and reappear.

(TD) 3.9 Marker Snap to Edge

A marker can also be used to indicate the end of a timing diagram. This is a useful feature if you are
exporting to test bench formats. You can also make the ends of all the signals snap to the marker for
a cleaner looking timing diagram.

Add an End Diagram Marker with Snap to Marker

In the last step we pressed the Marker button
so that right clicks will add markers to the
diagram.

Make sure that no edges are selected in the diagram, and then right click at the top of the
diagram at about 400ns. This will add a marker to the right of all the drawn signals.

Double click on the marker to open the Edit
Time Marker dialog. Notice that the
attachment is listed as Time because no
edges where selected when the marker was
added.

From the Marker Type box, choose End
Diagram. This causes the marker to draw
itself with the purple simulation line.

From the Display Label box, choose Type to
make the marker display End Diagram as the
display label (instead of its name).

Check the Signal ends snap to marker box
and press OK to close the dialog. Notice that
all of the drawn waveforms have drawn
themselves over to the marker.

Drag and drop the end diagram marker and notice how the waveforms draw themselves.

SynaptiCAD Tutorials64

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 3.10 Marker Loops and Pipelines

Loop and pipeline markers can be used to document sections of the timing diagram.TestBencher Pro
uses these markers to generate code for test benches and the code generation features are covered
in the TestBencher Pro Basic Tutorial . Since these are markers will generate code, the timing
diagram editor requires that both the beginning and ending markers are either attached to time or
attached to the same type of edge on the diagram.

Add a Pipeline Marker:

Pipelines begin with a pipeline boundary marker and end at either another pipeline boundary marker
or an end diagram marker. Since we already have an end diagram marker we will only need to add a
beginning marker to draw the pipe.

In the last step we pressed the Marker button
so that right clicks will add markers to the
diagram.

Make sure that no edges are selected in the
diagram, and then right click at the top of
the diagram at about 25ns. This will add a
marker to the right of all the drawn signals.

Double click on the marker to open the Edit
Time Marker dialog. Notice that the
attachment is listed as Time because no
edges were selected when the marker was
added.

From the Marker Type box, choose Pipeline
Boundary. If the program can match this with
another boundary marker or end diagram
marker it will draw a blue horizontal line
between the two markers.

For most of the timing diagram editors, the
Semaphore box is disabled. In TestBencher
the Semaphore name would be centered
above the pipe line marker.

In the Comment box enter some text like Read Cycle.

From the Display Label box, choose Comment to make the marker display its comment
instead of its name.

Press OK to close the dialog. Notice that a blue pipeline marker has been drawn across the
diagram.

142

Timing Diagram Editor 3: Display and Documentation 65

Copyright © 2011, SynaptiCAD Sales, Inc.

The horizontal line can be moved by dragging and dropping the marker label to a new position.

Investigate Loop Markers:

Loops begin with one of the Loop marker types (for loop, while loop, repeat loop) and end on an
end loop marker. Both the begin and end loop markers must be either both be attached to time or
both be attached to the same type of edge on a particular signal. Since these are so similar to
pipelines we will not add one in this tutorial, but the following picture shows what the Loop looks like
in the diagram. This is a For loop attached to the rising edges of SIG0.

(TD) 3.11 Spacers and Text Font Controls

Text objects can be placed anywhere in a diagram to annotate cycles, edges, or segments. The font
and color of each text object can be changed to stress the importance of that particular text object.
The fonts also support superscripts, subscripts, and bold and italic attributes so your timing diagrams
can use the same names and comments that are commonly used in data books. In this section we
will add a Spacer signal to the top of the timing diagram and then add a title using a text object.

Add a Spacer and drag it to the top of the diagram:

Press the Add Spacer button to
insert a spacer into the diagram. If
no signals are selected the spacer
will be added to the bottom of the
diagram.

Select the new spacer by left
clicking on it in the label windwo.

Then left click down on the
selected spacer so that a paper
icon appears and then drag the
icon to the top of the label window
and drop it.

SynaptiCAD Tutorials66

Copyright © 2011, SynaptiCAD Sales, Inc.

The Spacer adds a little space to
the top of the timing diagram so
that we will have room to place a
title.

Add a Text Object to the Diagram and drag it to the top of the diagram:

Press the Text button so that right clicks
will add text objects to the diagram.

At the top of the diagram, around 140ns,
right click to open a text editing box and
type Design and Documentation Tutorial,
and then press the Enter key to close the
editing box. This will add a text block to the
top of the diagram using the default font.

Double click on the text object
to open the Edit Text dialog box.

Add a second line of text that
says with Superscript and
Subscript.

Select the first line of text and
press the Bold button.

Select the Subscripts word and
press the subscript button.

Select the Superscripts word
and press the superscript
button.

Press the Font button and
change the color to purple then
close the font dialog.

Press Ok to close the text dialog

Click on the text object and drag
and drop it to a good location.

Experiment by adding more text blocks.

Timing Diagram Editor 3: Display and Documentation 67

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 3.12 Highlight Regions with Text Objects

Text Objects can also be used to highlight different regions of the timing diagram.

Press the Text button so that right clicks
will add text objects to the diagram.

Right click on top of the curved delay in
the center of the diagram and type
Highlight delay into the edit box.

Double click on the text object to open
the Edit Text dialog box.

Choose Ellipse from the Shapes
section.

Uncheck Show text so that only the
highlighted region will be displayed. The
text will be used as a tool tip when the
mouse goes over the region.

Press Ok to close the dialog and display
the highlighted region.

Put the mouse over the top edge of the
region so that it changes to an up-down
arrow, then drag and drop the edge to
resize the region to cover the entire
delay.

(TD) 3.13 Text and Hidden Signals

Text objects can be attached to edges of signals and centered inside segments so that as the timing
diagram is scrolled or zoomed the text keeps its relative placement to the parent signal. One
document trick that you can do is to attach a text object to a segment in a signal and then hide the
signal so that only the text object is shown. Below is an example where we wish to label the cycles
on the clock signal, but we do not want to display the documentation signal.

Add a Signal and Text Objects:

Press the Add Signal button to add
a signal to the bottom of the timing
diagram.

Double click on the new signal to
open the Signal Properties dialog.

SynaptiCAD Tutorials68

Copyright © 2011, SynaptiCAD Sales, Inc.

Change the Name to
Documentation.

Enter (100 = V)*20 into the waveform
equation box and press the Wfm
Eqn button to draw 20 valid
segments that are 100 ns long (the
period of the clock).

Select a segment on the waveform and then right click to add a text object. Type in some text
to document the clock cycle. Do this for several segments on the Documentation signal.

Drag and Drop the text objects until they are at the vertical height that you want.

Right click on the Documentation
signal name and choose Hide
Selected Signal from the context
menu. This will hide both the signal
and the text.

Check the View > Show Hidden
Text menu on the main program bar.

Notice the Show and Hide Signals
in the menu. This is the option that
you use to show hidden signals.

After you check Show Hidden test
the text will appear, but the
documentation waveform will not be
visible.

Timing Diagram Editor 3: Display and Documentation 69

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 3.14 Summary of Display and Documentation Tutorial

Congratulations! You have completed the Display and Documentation tutorial. In this tutorial you
experimented with parameter display settings including how to add distance measurements and
custom display strings. You have also touched on the some of the display options for markers, text
objects, and clocks, but these objects have many more features that are covered in the manual.

SynaptiCAD Tutorials70

Copyright © 2011, SynaptiCAD Sales, Inc.

Timing Diagram Editor 4: Analog Signals

This tutorial helps you experiment with viewing, generating, exporting, and converting data values for
Analog signals. Working through the tutorial will help you understand the different ways that
waveforms can be manipulated so that you can create the exact waveforms needed for your designs.

(TD) 4.1 Viewing Analog Waveforms

In this section you will draw the timing diagram shown below. Each of the three signals have the
same waveform values, but are displayed using different settings. The first analog signal draws the
waveform from point to point in a piecewise-linear way. The second analog signal shows the waveform
drawn as step voltages.

Timing Diagram Editor 4: Analog Signals 71

Copyright © 2011, SynaptiCAD Sales, Inc.

Add Two Digital Signals that are exactly the same:

Add one signal by pressing the Add
Signal button.

Double click on the signal to open
the Signal Properties dialog.

Change the name to
RealRadix_Digitaland choose the
real radix from the radix box.

Close the dialog.

Next, sketch four valid segments as shown.

Then double click on the first segment to open the Edit Bus State dialog and enter a Virtual
state of 1.5. Use the Next button in the dialog to jump to subsequent segments and change
the values to 1.5, 3.0, and 4.5. Close the dialog when you are done.

Copy the completed digital signal by
selecting the signal name then choosing
the Edit > Copy Text and Signals
menu. Then Paste it using the CRTL-V
keys so that you have two identical
signals.

SynaptiCAD Tutorials72

Copyright © 2011, SynaptiCAD Sales, Inc.

Setup the Analog Display for the default Slanted Display:

Double click on the new signal to
open the Signals Properties dialog
and change its name to
RealRadix_Analog_Slanted and
check the Analog Display box so
that the signal will display as a
magnitude plot.

By changing the Size Ratio to 2 or
larger, the signal will be drawn
taller so that it is easier to see the
waveform.

Close the dialog to display the
signal as an analog magnitude
plot.

Display the signal as step voltages:

Copy and Paste the
RealRadix_Analog_Slanted
signal by selecting the name and
using the Ctrl-C and Ctrl-V keys.

Double click on the new signal to
open the Signals Properties
dialog and change its name to
RealRadix_Analog_Straight.

Since this is a copy of the other
analog signal, the Analog
Display is checked and the
Radix is set to real.

Next press the Analog Props
button to open the Analog
Properties dialog.

Check the Use Straight Edges
box to change the magnitude
display. Press Ok to close this
dialog.

Notice when the steps occur in
relation to the RealRadix_Digitial
signal.

Timing Diagram Editor 4: Analog Signals 73

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 4.2 Faster Drawing with Waveform Equation Blocks

The fastest way to generate analog waveforms that can be edited as equations is to use a Waveform
Equation Block. Waveform equation blocks contain a Python function that is evaluated at each point
to calculate the associated waveform value. There are several built-in functions and you can write your
own functions.

Adding a Waveform Equation Block:

Add a new signal and draw
one or more waveform
segments on it.

Double Click on a segment
to open the Edit Bus State
dialog.

Press the Insert Block
button to open the
Waveform Equation Block
Properties dialog.

SynaptiCAD Tutorials74

Copyright © 2011, SynaptiCAD Sales, Inc.

Choose Sine Wave
from the pre-defined
equation flyout.

Notice that the code to
make the sine wave is
shown in the edit box
portion of the dialog.
This is Python code that
can be edited by you.

The State function is
called at each point in
the Sampling Period (
startT + n*deltaT) to
figure out the value for
the waveform at that
particular point (n).

Press OK to close this
dialog and generate the
waveform.

Setup View Mode and Drag the Equation block:

When you are viewing the waveforms normally, it is impossible to tell the difference between a sine
wave generated by a Waveform Equation Block or one generated by the older method of State Label
Equations. There is a special mode that will highlight the equation blocks and speed up editing these
blocks (in this mode, double clicking on the block will directly open the dialog that edits waveform
blocks).

Check the View > Show Waveform
Block Highlights menu to draw blue
boxes around all of the Waveform Equation
Blocks.

Move the block around by dragging-and-
dropping the first edge of the block using
the left mouse button. This moves the
block but does not affect the other edges
of the signal.

To move all of the transitions on one signal, hold down the <1> and <2> number keys while
dragging the equation block. Holding down just the <1> key moves all the edges to the left of
the selected edge, and the <2> key moves all the edges to the right of the selected edge. You
may need to add more transitions on the signal to see the effect of these keys.

(TD) 4.3 Writing Python Waveform Equation Blocks

If you use the pre-defined waveform equation blocks, you will edit the code to control the different
parameters like period or amplitude. You can also choose to write your own equations.

Timing Diagram Editor 4: Analog Signals 75

Copyright © 2011, SynaptiCAD Sales, Inc.

Edit the default Sine Wave:

Double click on the equation
block to open the Waveform
Block Properties dialog. If the
Edit Bus State dialog opens
instead, then press the Edit
Block button to get to the
Waveform Block Properties
dialog.

The State equation is called to
calculate the value for each
point on the waveform.

The points are at (startT + n *
deltaT). It stops when
durationT is reached.

Changing the Start Time is the
equivalent of dragging and
dropping the leading edge of
the block's selection box.

Making the Sampling Period
smaller will create more points
in the block (e.g. durationT/
deltaT points will be created by
the block).

Make the sine wave
cover a longer period of
time by adding 10ns to
the Duration and
pressing the Apply
button.

Investigate the Code:

The first line is a comment string that defines the
name of the function. It does not have to be
included.

"""Sin"""

Here sampleT is defined as a relative time from the
start of the block so that the waveform shape is
independent of the start time of the block.

sampleT = currentT - startT

 These lines will normally be edited to control the
period and amplitude of the signal.

Change the period to 5.0 and press the Apply
button to see the period change.

amplitude_v = 5.0
period_ns = 10.0

SynaptiCAD Tutorials76

Copyright © 2011, SynaptiCAD Sales, Inc.

This imports the standard Python math library so
you do not have to define what basic math
functions like sin do.

import math

You must keep track of
the time units that you are
working on.

convert Display Time Units to Base Time Units
this example assumes DTU = ns & BTU = ps
period_ps = period_ns * 1000.0

return amplitude_v * math.sin(2.0 * math.pi * sampleT / period_ps)

In the last line, a real value is returned for the current sample point. The math.sin() function is
the sine function in the Python math library.

(TD) 4.4 State Label Equation Alternative

Another way to generate analog signals is to use Waveform and Label equations. This is a little
simpler than writing the Python code required when using the Waveform Equation Blocks of the
previous section. However, once the waveform is generated you cannot edit it using the original
equation. You will have to either edit each edge, or delete a section of the waveform and regenerate
it.

In this example, we will use a Waveform Equation (not a block equation) to generate the blank
waveform segments. Then use a State Label equation to insert the values onto the segments. We will
be inserting an extra segment for each value change so that we can use it in the next section to
render a "stepped" waveform even though we have not checked the Use Straight Edges checkbox.

Use a Waveform Equation to Generate the Valid segments:

Add a new signal and double click to
open the Signals Properties dialog.
Name the signal SIG0_Digital and s
et the radix to real.

Notice the default equation in the
Wfm Eqn box. It is an example of all
the syntax accepted by the
generator. Each segment is
represented by a time=state pair. If
you forget the syntax just generate
this equation and figure it out from
the waveform.

Enter (50=V)*5 to generate 5 valid
segments that are 50ns long.

Press the Wfm Eqn to generate the waveform segments. Leave the dialog open.

Use a simple Label Equation to label the segments:

The Label Equation box accepts equations that generate state values for the signal's waveform
segments. This example demonstrates the concatenation operator (the comma). The concatenation

Timing Diagram Editor 4: Analog Signals 77

Copyright © 2011, SynaptiCAD Sales, Inc.

operator can also be combined with the decrement and increment label equations to create more
complex patterns.

In the Label Eqn box, type 1.5, 1.5,
4.5, 4.5, 0.

Press the Label Eqn button to apply
the equation.

Create an Analog Signal:

Copy and Paste SIG0_Digital by selecting the signal name and using the Ctrl-C and Ctrl-V
keys. Double click on the new signal to open the Signal Properties dialog.

Name the signal SIG0_Analog

Check the Analog Display check
box.

Set the Size to 2, to expand the
waveform.

Press the Apply button to apply
the changes to the signal.

Although the above analog signal appears to have ramps in it, it will look like a stepped waveform
when exported to a digital simulator. To create ramps that export to a digital simulator, use the Ramp
label equation as discussed later in this tutorial.

(TD) 4.5 Drawing a Step Signal

The analog signal from the previous step can now be easily converted to a step signal by adjusting
the edge times for the segment that displays the change in value (The second and the fourth
segments in our example). You can either use the mouse to move one of the edges of the segment to
the same time as the other or you can use the Edge Properties dialog to adjust the edge times.

To use the Edge Properties dialog:

Copy and Paste SIG0_Analog by selecting the signal name and using the Ctrl-C and Ctrl-V
keys. Double click on the new signal to open the Signal Properties dialog and name the new
signal SIG0_Step.

SynaptiCAD Tutorials78

Copyright © 2011, SynaptiCAD Sales, Inc.

Double-click the first edge to
open the edge properties
dialog.

Make note of the Min time
(50ns).

Click the Next button to
move to the next edge (at
100ns).

Enter the Min time from the
previous edge (50ns) in
either the Min or Max edit
box. Click Next to move to
the next edge and apply the
changes.

Notice that there is a vertical
step at 50ns.

Move the edge at 200ns to
150ns using the same
technique.

(TD) 4.6 Generating Sine Waves

Both Waveform Block Equations and Label Equations can be used to generate Sine wave signals.
There are three functions SinStart, Sin, and SinEnd that generate sine waves with a growing,
steady, or decreasing amplitude. Both methods produce waveforms that look the same. However,
Waveform Block Equations can be edited to tweak what the waveform looks like. With State Label
Equations, each generated state is a separate event and must be individually edited or erased if
changes are needed.

SinStart function with State Label Equations

First we will start with the State Label equations where each function has parameters for amplitude,
period and duration. There is also an optional fourth parameter that can specify the number of
points to use when drawing the waveform. It is not necessary to memorize the syntax of the function,
because the equation fly-out will tell you the parameters and function names. The SinStart functions
starts a Sine wave with amplitude of 0 and grows to the amplitude specified over the duration
specified.

Timing Diagram Editor 4: Analog Signals 79

Copyright © 2011, SynaptiCAD Sales, Inc.

Add a new signal and
double click on it to
open the Signal
Properties dialog.
Name the signal
SinWave, then
delete any text that
might be in the Label
Eqn box. Adjust the
placement of the
dialog so that you
can see the
waveform area and
the dialog at the
same time.

Next click on the
Label Eqn fly out
button (see below)
and choose SinStart
from the list of
available functions.

Notice that the SinStart function has
been added to the Label Eqn box.

Edit the parameters so that signal
will have amplitude of 5, a 20ns
period and has reached its full
amplitude by 100ns (assuming that
ns is the display time unit)

Press the Label Eqn button to generate the start of a Sine wave. The timing diagram editor
will automatically change the radix of the signal to real, because the generator uses floating
point numbers to model the waveform. The waveform should look similar to this:

Sin function with State Label Equation

The Sin function draws a continuous Sine wave using the specified parameters. Here, we will append
to the starting Sine wave drawn on the SinWave signal.

Enter Sin(5, 20, 100) in the Label
Eqn box either by typing or using
the equation flyout.

Press the Label Eqn button to continue the Sine wave generation.

Notice that by using the same parameters, the generated Sine wave matches the Start Sine wave

SynaptiCAD Tutorials80

Copyright © 2011, SynaptiCAD Sales, Inc.

that was drawn.

SinEnd function

The SinEnd function does the inverse of the SinStart function. It starts with a Sine wave of the full
amplitude and diminishes over the specified duration until the amplitude is zero.

Enter SinEnd(5, 20, 100) in the
Label Eqn history either by typing
or using the equation flyout.

Press the Label Eqn button to finish our Sine wave generation.

Sine waves with Waveform Block Equations

Waveform Equation Blocks preserve the beginning and ending edges of the block so that the block
can be dragged and dropped independently of other blocks on the same signal. In the picture below,
the waveform was created by inserting waveform equation blocks into consecutive valid segments.
This caused unsightly black lines to be drawn between the segments.

If you delete the black lines between two waveform equation blocks, then the blocks are said to be
chained together. Each block can still be edited, but the starting time of the second block is now
fixed at the ending time of the first block. A quick way to add chained blocks is to add a block to the
middle of a long waveform segment:

Add a new signal and double click on
it to open the Signal Properties
dialog. Name the signal SinBlock.

Draw one long segment on the SinBlock signal that is at least 250ns long.

Double click on the segment to
open the Edit Bus State dialog.

Press the Insert Block button to
open the Waveform Equation
Block Properties dialog.

Timing Diagram Editor 4: Analog Signals 81

Copyright © 2011, SynaptiCAD Sales, Inc.

Choose Sine Wave
Start from the flyout.

Change Duration to
100 ns.

Edit the code so that
period_ns = 20.0

Press the OK button to
close the dialog and
draw the waveform.
Notice that there is not
a black line at the end.

Double click on rest
of the segment to
open the Waveform
Equation Block
Properties dialog.

Choose Sine Wave
from the flyout.

Change Duration to
100 ns.

Edit the code so that
period_ns = 20.0

Press the OK button
to draw the
waveform.

Add the sine wave ending section by choosing Sine Wave End from the flyout and changing
Duration to 100ns and setting the period_ns to 20.

There is a small black line at the end of the waveform because this is the event that got moved
from 250ns. You can delete it if desired.

(TD) 4.7 Generating Capacitor Charge and Discharge

Both Waveform Block Equations and Label Equations can be used to draw capacitor charge and
discharge waveforms. These functions have three required parameters - amplitude, RC constant,

SynaptiCAD Tutorials82

Copyright © 2011, SynaptiCAD Sales, Inc.

and duration - that are used to generate the waveform.

For Label equations, there is also an optional fourth parameter that can specify the number of points
to use when drawing the waveform. For Waveform Block Equations, the number of points is
determined by durationT/deltaT.

Capacitor Charging Waveforms with State Label Equations

The CapCharge function generates the waveform for a charging capacitor. The waveform will start at
zero and gradually rise (using the RC value) to the amplitude at the end of duration specified.

Add a new signal to the diagram
and double click on it to open the
Signal Properties dialog. Name the
signal Capacitor_Waveform and
set the Size ratio to 2.

Enter CapCharge(5, 10, 50) in the
Label Eqn box either by typing or
by using the equation flyout. The
parameters are amplitude of 5, RC
constant of 10, and duration of 50ns
(assuming the ns is the display
time unit).

Click Label Eqn to generate the
capacitor charging waveform. The
timing diagram editor will
automatically change the radix of
the signal to real, because the
generator uses floating point
numbers to model the waveform.

Capacitor Discharge Waveforms with State Label Equations

The CapDischarge function performs the inverse of the CapCharge function. The waveform starts at
the maximum amplitude and it slowly declines based on the RC provided over the duration until it
reaches the lowest point.

Enter CapDischarge(5,10,50) in
the Label Eqn box by typing or by
using the equation flyout. This
generates a capacitor discharge
waveform that starts at an
amplitude of 5, and discharges at a
rate controled by an RC value of 10,
and a duration of 50ns (assuming
that the display time unit is ns).

Press the Label Eqn
button to generate the
waveform.

The Capacitor label equations append to the end of the waveform, so you can also draw part of the

Timing Diagram Editor 4: Analog Signals 83

Copyright © 2011, SynaptiCAD Sales, Inc.

waveform and then append a capacitor waveform to the drawn signal.

(TD) 4.8 Generating Ramp Waveforms

The best way to create a ramp signal is to either use a Ramp label equation or a Ramp waveform
block equation. These functions can create a ramp signal with plenty of data points, so that it will
export accurately to both analog and discrete-event digital simulators. The functions have three
required parameters: startVoltage, endVoltage, and duration. For Label equations, there is also an
optional fourth parameter that can specify the number of points to use when drawing the waveform.

Draw a ramp with a State Label Equations

Add a new signal to the diagram and
double click on the signal name to
open the Signals Properties dialog.
Name the signal Ramp_waveform
and set the Size ratio to 2.

Clear out any text that might be in
the label equation box, then use the
equation flyout button to insert a
Ramp function.

 Edit the parameters as shown to
make a ramp that starts at 0 volts and
ramps up to 5 volts, over a period of
150 ns. Also add the fourth parameter
to specify that the ramp should be
generated using 40 points.

Press the Label Eqn
button to generate the
waveform.

Edit the parameters to make a
down ramp, then press the Label
Eqn button to generate the
waveform.

(TD) 4.9 Random Analog Equations

Waveform Block Equations can also be used to generate random digital and analog data.

Generate a Digital Signal with Random Values

Add a new signal and
draw a waveform
segment that is about

SynaptiCAD Tutorials84

Copyright © 2011, SynaptiCAD Sales, Inc.

300ns long.

Double click on the segment to
open the Edit Bus State dialog.

Press the Insert Block button to
open the Waveform Equation
Block Properties dialog.

Change the Sampling
Period to 20ns.

Choose Random
Integer from the pre-
defined equation flyout.

In the code block,
change the maxValue
to 255.

Press the Ok button to
close the dialog and
generate the digital
signal.

Notice that the digital
segments on the
signal are 20ns long
and the random values
are between 255 and
0.

Display the Signal as Analog:

Double click on the signal name to
open the Signal Properties dialog.

Change the name to Random.

Check the Analog Display box.

Change the MSB to 7 and the LSB
to 0. This will make it an 8 bit signal
which can display the random values
in the 255 to 0 range.

Press the Ok button to close the
dialog and display the signal.

Timing Diagram Editor 4: Analog Signals 85

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 4.10 Exporting to SPICE, VHDL, and Verilog

WaveFormer Pro can export waveforms to many different formats by using the Import & Export >
Export Timing Diagram menu and saving to the appropriate format.

Exporting Analog Signals To SPICE:

When exporting an analog signal to SPICE, the straight edges box in a signal's Analog Properties
dialog determines whether the signal is modeled as piecewise-linear or as step voltages. Step
voltages are approximated by adding an additional point in the spice PWL statement immediately
after each drawn point. Digital signals always export to SPICE as quasi step voltages using PWL
statements. To export to SPICE:

Choose the Import/Export >
Export Timing Diagram As menu
to open the Export As dialog.

Choose one of the Spice
formats, like Spice sources
from the Save as type box,
then save the file.
WaveFormer will save the file
and also display it in the
Report Window.

Notice the differences between the code for the RealRadix_Analog_Slanted and Real
Radix_Analog_Straight signals that were drawn in the first section. When the straight edges
box is checked, there are extra points where the voltage changes abruptly in a short period of
time to represent the step voltage changes.

SynaptiCAD Tutorials86

Copyright © 2011, SynaptiCAD Sales, Inc.

Exporting to VHDL or Verilog Simulators:

When exporting analog signals to a discrete event simulator such as VHDL or Verilog, analog signals
must be exported as step voltages (discrete event simulators cannot model a true ramp, for example,
so ramps must be approximated by step voltages). So regardless of whether an analog signal is
being rendered piecewise-linear or as step voltages in the timing diagram window, it will export as
step voltages to HDL simulators.

The export is performed as show above, except that one of the VHDL or Verilog formats is chosen in
the Save As Type box,

(TD) 4.11 ADC and DAC Conversion

When working with multi-bit signals, changing radix or the msb/lsb performs a conversion similar to
an Analog-to-Digital or Digital-to-Analog converter, depending on the direction that you are going in.
For single-bit signals, like a digital waveform captured by a digitizing oscilloscope or from a SPICE
simulation of a digital circuit, you can convert the analog data into digital data with uncertainty at the
edges by using the Digitize Single Bit Signal button in the Analog Properties dialog of the signal.

Timing Diagram Editor 4: Analog Signals 87

Copyright © 2011, SynaptiCAD Sales, Inc.

DAC conversion on a multi-bit signal:

Copy and paste the signal
RealRadix_Digital using the CTRL-
C and CTRL-V keys (this is the
signal you drew in section 4.1).

Double click on the new signal's
name so that the Signals Properties
dialog opens, and name the signal
DAC_and_ADC.

Next, we will convert this analog
signal to a multi-bit digital signal
using a 12-bit DAC, by changing the
MSB/LSB to 11-0, and the radix to
Hex, and then pushing the Apply
button.

ADC conversion on a multi-bit signal:

Convert the digital signal, back to
an analog signal by changing the
radix to real and pressing the
Apply button.

Notice that the values are no longer exactly 1.5 or 4.5. This is caused by the rounding errors of
the 12-bit DAC.

Save the timing diagram:

Use the File > Save Timing Diagram to save your tutorial diagram. The next step will be
loading a new diagram.

ADC conversion on a single-bit signal:

Choose the File > Open Timing Diagram menu to launch the Open File dialog. Use the
browse button to navigate to the SynaptiCAD > Examples > SPICE directory. This can also
be accomplished using the Import/Export > Import Diagram menu which will allow selective
loading of signals.

Choose a file type of Spice - (*.
csd; *.out; *.tro).

Select the spiceoutput.csd file,
and press the Open key load the
file.

SynaptiCAD Tutorials88

Copyright © 2011, SynaptiCAD Sales, Inc.

Double click on I(V1) to open the
Signal Properties dialog. Then press
the Analog Props button to open
that dialog.

Press the Digitize Single Bit
Signal(s) button to digitize the
signal.

Notice the waveform display now has
two I(V1) signals. The I(V1)_d is the
digitized version, and I(V1) preserves
all of the analog data. You can alter
the High Switch Threshold and
Low Switch Threshold parameters
to change the amount of uncertainty
generated on the digital signal's
edges. The Logic High and Low
Voltage values should be set to the
nominal high and low voltage values
for the logic type of the digital signal.

(TD) 4.12 Summary of Analog Signals Tutorial

Congratulations you have completed the Analog Signals Tutorial. You have drawn and generated the
following waveforms:

Timing Diagram Editor 4: Analog Signals 89

Copyright © 2011, SynaptiCAD Sales, Inc.

SynaptiCAD Tutorials90

Copyright © 2011, SynaptiCAD Sales, Inc.

Timing Diagram Editor 5: Parameter Libraries

This tutorial explains how to create and use timing parameter libraries. Library files contain the timing
parameter information for circuit components.The timing diagram editor can be used to create libraries
with parameters that are exclusive to your projects. The timing diagram editor also ships with several
standard libraries that contain over 10,000 timing parameters, and it also supports the industry
standard TDML on-line component information.

(TD) 5.1 Setup for Library Tutorial

Since this tutorial focuses on how to make and work with libraries, we will save some time by loading
a pre-drawn timing diagram.

Load the timing diagram file tutlib.btim:

Select the File > Open Timing Diagram menu option and load tutlib.btim from the
SynaptiCAD\Examples\TutorialFiles\ParameterLibraries directory.

Select the File > Save As menu option and save the file as mylib.btim (this will keep the
original file intact).

Timing Diagram Editor 5: Parameter Libraries 91

Copyright © 2011, SynaptiCAD Sales, Inc.

Setup the Drawing environment:

Minimize the Report window (and Project window if
applicable). They are not used in this tutorial.

Select the Window > Tile Horizontally menu option.
Both the Diagram and the Parameter windows should be
visible during this tutorial. If you are unable to view one of
the windows, use the Window > Parameter or
Window > Diagram menu option to open the missing
window.

(TD) 5.2 Add Libraries to the "Library Search List"

In order for a timing diagram to use a library, it must know the library's name and path location. This
information is kept in the diagram's library search list.

Choose the ParameterLibs > Parameter Library Preferences menu to open the Parameter
Library Preferences dialog.

Press the Add Library to List button to open the Parameter Library Browse dialog to search
for libraries on your disk.

Select the two sample libraries ac.txt and 3ac.txt, located in the
SynaptiCAD\Examples\TutorialFiles\ParameterLibraries directory.

Press the OK button to add the selected files to your search list, and close the Parameter
Library Browse dialog.

Notice that the filenames for the libraries have their path names attached unless you have
unchecked the Use full path names check box. If it is unchecked, the library path searched
will be relative to the location of the timing diagram.

The next section also uses the Parameter Library Preferences dialog so leave it open.

SynaptiCAD Tutorials92

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 5.3 Setup the Library Specifications

Often several libraries will contain parameters with the same names, and the diagram needs a way to
distinguish between such parameters. SynaptiCAD uses library specifications to make the
distinction. In this tutorial the 3ac and ac libraries contain parameters with the same names, so we
will use library specifications when we reference these parameter names. If no specification is used
when referencing a parameter, the program will use the values of the parameter in the first library that
it finds a definition.

Select both the 3act.txt and the
ac.txt library files.

Press the right arrow button to
assign specifications to the
selected libraries.

The specification for ac.txt is ac
and the specification for 3ac.txt
is 3ac.

Library specification can be remove by selecting them and using the left arrow. You can experiment
with this, but make sure the ac and 3ac specifications are assigned before moving on to the next
section.

(TD) 5.4 Investigate Preferences Dialog

The Parameter Library Preferences dialog has three radio buttons across the top that control what the
dialog edits. So far we have been using the dialog with the Edit Parameter Libraries radio button
selected, which means that we were just editing library settings for the current timing diagram.

Default Settings for new timing diagrams:

If we had selected the Edit Default Libraries radio button, then the libraries settings would have
been saved in the ini file of the program. All new timing diagrams would automatically start with the
default library settings. We will not demonstrate this in the tutorial.

View Parts mode:

Once the libraries are in the library list and have their specifications defined, you will be working with
the dialog in the View Parts mode. You can select the radio button in the current dialog and continue
with the tutorial. However, we want to demonstrate other ways to open the dialog, so close it for now.

Press the OK button to close the Parameter Library Preferences dialog.

(TD) 5.5 Referencing Parameters in Libraries

Now that we have added the libraries and set the specifications, we want to reference the library
parameters in our project.

Timing Diagram Editor 5: Parameter Libraries 93

Copyright © 2011, SynaptiCAD Sales, Inc.

Make Dsetup reference a Library part:

In the Parameter window, double click
on the min value of the Dsetup
parameter to open the Parameter
Properties dialog.

If there were more than one instance of
Dsetup in the diagram, opening the
Parameter Properties dialog this way
would change the timing values for all
instances of the parameter.

Delete the value in the min edit box.

Press the Library button to open the
View Parameters in Libraries dialog
(this is really the Parameter Library
Preferences dialog in View Parts
mode).

Notice that there are three libraries on
the library list; the 3ac.txt and Ac.txt
that you added in step 5.2, and one
called Parameter Data Table. This
extra library is a virtual library that lists
all the parameters in the current
timing diagram. You can use virtual
library parameters in formulas just like
regular library parameters.

Select the Ac.txt library from the library list. This displays the parameters in this library in the
library parts list on the right.

Scroll down in the library parts and select parameter 074;D2CK_ts.

SynaptiCAD Tutorials94

Copyright © 2011, SynaptiCAD Sales, Inc.

Press the Insert Into Formula button then press the Ok button to close the dialog.

Notice that the min box in the
Parameter Properties dialog has the
parameter with the library specification
appended to the front. A "+" sign is
also added, so you can easily add
together several library timing
parameters by selecting multiple
parameters then pressing the Insert
Into Formula button.

Notice that the max column is blank, this is because the parameter in the library only has a
min value defined.

Make INVtp reference a library parameter:

Double click on the INVtp parameter in
the diagram window to open the
Parameter Properties dialog.

Press the Library button to open the
View Parameters in Libraries dialog.

Select the ac.txt library to display its parts on the right hand side.

Select parameter 004;tp then press the Insert Into Formula button to insert the values into
the INVtp boxes.

Press the OK button to close the View Parameters in Libraries dialog.

Timing Diagram Editor 5: Parameter Libraries 95

Copyright © 2011, SynaptiCAD Sales, Inc.

Notice that the ac:004;tp parameter
was added to the values that were
already in the min and max edit
boxes.

Delete the original values from the min
and max edit boxes, leaving only the
ac:004;tp value.

Press the OK button to close the
Parameter Properties dialog.

Make DFFtp reference a library parameter:

Repeat the
above process
for DFFtp, by
inserting 074;
CK2Q_tp from
the ac.txt
library. Try
using the
Search For
edit box in
the View
Parameters in
Libraries
dialog, instead
of scrolling, to
find a
parameter
name.

(TD) 5.6 Using Macros to Examine Tradeoffs Between Different
Libraries

Your diagram is now using values for the AC logic family operating at 5V. If you want to examine the
impact of changing your design to 3.3V, you need to change the library specifications of the
parameters to "3ac". It can get tedious changing back and forth between different libraries when you
have to change the name of each parameter. To avoid this you can create a macro which you use in
place of the library specification in your parameter names. Then to change libraries you just need to
change the value of the macro.

SynaptiCAD Tutorials96

Copyright © 2011, SynaptiCAD Sales, Inc.

To create a macro:

Select the
ParameterLibs >
Macro Substitution
List menu option to
open the Edit Formula
Macros dialog.

Enter %ac% into the
name edit box.

Select ac from the
Value drop down box.
The drop down box
contains all libraries that
have specifications.

Press OK to add the macro to your macro list.

Edit the Parameters to make them use the macro:

Now we must edit the five min & max values of your parameters, by replacing ac with %ac%. To
make it easier to check our work, first setup the parameter window to display the formulas.

Choose the Options > Parameter
Window Preferences menu and
check the Display min/max
formula option.

Adjust the columns of the
parameter window so that you can
see the formulas.

Double click on one of the formulas
to open the Parameter Properties
dialog.

Replace the ac with %ac% which
references the macro.

Use the Prev and Next buttons to
move to the next parameter.

When you are done the table
should look like this:

Timing Diagram Editor 5: Parameter Libraries 97

Copyright © 2011, SynaptiCAD Sales, Inc.

Switch in the 3 volt Library using the Edit Formula Macros dialog:

Select the ParameterLibs > Macro
Substitution List menu option to open
the Edit Formula Macros dialog.

Click on the macro %ac% in the list
box. This places this macro into the
Name/Value edit boxes.

Use the Value drop down box to change the value of the macro to 3ac. Click OK to close the
dialog.

Your design should now be using the 3V AC values (the delays should be longer due to the
decreased supply voltage). You have now completed the parameter library tutorial.

Note: Macros can also be used to make short or alternative names for library parameters without
having to edit the library names.

(TD) 5.7 Parameter Libraries Summary

Congratulations! You have completed the Parameter Libraries tutorial. In this tutorial you
experimented with libraries, library specifications, and macros. The Timing Diagram Editing Manual
Chapter 10: Parameter Libraries has information on how to create your own libraries.

SynaptiCAD Tutorials98

Copyright © 2011, SynaptiCAD Sales, Inc.

Timing Diagram Editor 6: Advanced Modeling and
Simulation

This tutorial demonstrates how WaveFormer Pro can quickly model and simulate a digital system of
moderate complexity. We will be modeling a circuit that computes histograms for 64K of data
generated by a 12-bit Analog-To-Digital converter (this is a popular method for testing dynamic SNR
for ADCs). This circuit is a simplified form of a real VME board that would take several months to
model and simulate using conventional EDA tools. Using WaveFormer, we will model and simulate
this simplified circuit in 20 minutes. The full circuit with the complete VME bus interface protocol
could be modeled and debugged in about 4 hours.

Figure 1: Histogram circuit block diagram.

This tutorial teaches the user how to:

1. Model state machines using the Boolean Equation interface.

2. Generate input signals using temporal and label equations.

3. Use the simulation log to find design entry errors.

4. Simulate incrementally by temporarily modeling outputs as drawn inputs.

Timing Diagram Editor 6: Advanced Modeling and Simulation 99

Copyright © 2011, SynaptiCAD Sales, Inc.

5. Enter direct HDL code for simulated signals.

6. Use external HDL source code models.

7. Model tri-state gates using the conditional operator.

8. Model n-bit gates using reduction operators.

9. Model transparent latches.

10. Debug Verilog source code using $display statements.

11. Control length of simulation time using a Time Marker.

12. Edit an external HDL file with WaveFormer's Report window.

Before you begin the tutorial you may wish to view Figure 3 in Section 13 which shows a completed
version of the diagram that we will generate. File tutsim.btim included in the product directory is a
finished tutorial file. You will not use this file during the tutorial itself, but you can always refer back to
this file if you encounter any problems during the tutorial.

Circuit Operation

A histogram is a graph displaying the count of same 12-bit values received from the ADC. To store
the histogram count values we will use a 4K SRAM (2 12 storage cells) to hold a count for each
possible 12-bit value that the ADC can generate. The width of the SRAM depends on how many data
values we will accumulate from the ADC. In the worst case, the ADC could generate the same value
for the entire histogram accumulation, so the SRAM must be able to store a value of up to 4K. Thus
we will use 2 8-bit wide SRAMs (2 16 = 64K > 4K).

When the circuit starts operation, the SRAM should contain zeros at every address. Each time a
data value is generated by the ADC, that data value is used as an address to look up the current
count for the data value in the SRAM. The count is incremented by one and the new value is written
back to the SRAM. This continues until the circuit has r

(TD) 6.1 Set up a New Timing Diagram

Create a new timing diagram:

Select the File > New Timing Diagram menu option to create a new diagram.

Minimize the Parameter window. It is not used in this tutorial.

Select the Window > Tile Horizontally menu option. This will provide us with optimal viewing by
rearranging the Diagram window and the Report window (if either of these windows is not visible,
select the menu option Window > Diagram or Window > Report to make it visible).

Hide the Direction and Index Columns in the Label window:

Choose Options > Drawing
Preferences to open the
dialog. Then uncheck Show
Direction Icons and Show
Index.

Now that we have a new diagram to work with, we are ready to model the components of our circuit.

SynaptiCAD Tutorials100

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 6.2 Generate the Clock, Draw Waveforms, & Use Waveform
Equations

The histogram circuit has a system clock, CLK0, and three signal inputs, POWER, START and
ADDR. We will create the waveforms for each of these signals using three different methods:
generating from clock parameters, drawing waveforms by hand, and automatically generating
waveforms from temporal equations.

2.1 Automatically generate the CLK0 system clock

Add a clock named CLK0 with a period of 100 ns:

1. Click the Add Clock button to open the Edit Clock Parameters dialog.

2. Verify that the default values are: name = CLK0, period = 100 ns, and duty = 50%. If not then
make the necessary adjustments.

3. Press OK to accept the default values for the clock.

2.2 Graphically draw the POWER and START signal

The POWER signal is a power-on reset signal that we will use to set the initial state of our state
machine. The START signal is an external input to the system that pulses high to initiate acquisition
in the histogram circuit. The POWER and START waveforms are relatively simple, so we will draw
them with the mouse.

1. Click on the Add Signal button twice to add two signals.

2. Double-click on a signal name to open the Signal Properties dialog. Use this dialog to change
the names of the signals to POWER and START.

3. Draw the POWER signal so that it is low for 80ns, then high for 2000ns.

4. Draw the START signal so that it is low for 60ns, high for 100ns, and then low for 800ns:

5. Verify that the timing diagram looks like:

Waveform drawing and editing techniques can be found in Chapter 1: Signals and Waveforms in the
online help.

2.3 Use Temporal and Label Equations to model ADDR (A/D converter's output data)

We will model the A/D converter just as a data source, so all we need to do is generate a virtual bus
signal called ADDR (the output from the ADC) that drives the address lines of the SRAMs. The ADDR
waveform has a regular pattern that can be described easily using an equation, but would be tedious
to draw by hand.

Add a virtual bus signal called ADDR:

1. Add a signal and change the name to ADDR. Leave the Signal Properties dialog open for the rest
of the section.

2. Set the signal’s Radix to hex and the MSB to 11. Changing the MSB and Radix defines ADDR
as a 12-bit signal that display its values in hexadecimal format.

Timing Diagram Editor 6: Advanced Modeling and Simulation 101

Copyright © 2011, SynaptiCAD Sales, Inc.

The A/D converter is driven by a clock that is 1/2 the frequency of the state machine clock CLK0, so
the ADDR value should change every other clock cycle (this maintains the same address for the read
out of each RAM cell's count data and its write back after it is incremented). The ADDR signal should
be unknown for 170ns then it should have twenty valid states, each 200ns in duration. Use the
Waveform Equation interface of the Signal Properties dialog to generate the ADDR waveform:

1. Enter the following equation into the edit box next to the Wfm Eqn button: 170=X (200=V)*20

2. Press the Wfm Eqn button to apply the waveform equation. Notice that the waveform drew itself.
If the waveform didn't draw, a syntax error was made when typing in the equation. To determine
what the error was, look at the file waveperl.log displayed in the Report window. This file will
show you which part of the equation could not be parsed. Fix the error, and press the Wfm Eqn
button again.

Next, we will label the states of the ADDR bus using a Label Equation. Each state could be labeled
individually using the extended state field of the HEX dialog box, but labeling twenty states would take
a long time. Instead, we will write an equation to label all the states at once. Chapter 11 covers all the
different state labeling functions.

1. Enter the following equation into the edit box next to the Label Eqn button Skip(1), Rep
((0,1,2,3,4), 4).

2. Press the Label Eqn button to apply the equation.

This equation will generate a hex count from 0 to 4, and then repeat it 4 times. The Skip(1) means
start labeling after the first state (which we defined to be an invalid state using our waveform
equation). Your timing diagram (at the appropriate zoom level) should now resemble the diagram
below.

(TD) 6.3 Modeling State Machines

We will use a simple one-hot state machine to control the circuit, and we will model it using Boolean
Equations. A one-hot state machine uses a single flip-flop for each state. At any given time, only the
flip-flop representing the current state will contain a 1, the other flip-flops will be at 0 (hence the name
one-hot).

SynaptiCAD Tutorials102

Copyright © 2011, SynaptiCAD Sales, Inc.

Figure 2: State diagram and design equations for the histogram controller state machine

The state machine (SM) initializes to the IDLE state. On the negative edge of the clock after START
goes high, the SM will enter the READ state and look up the current count for the current address
value being output by the A/D converter. This value will be incremented by a simple fast-increment
circuit. On the next clock, the SM will enter the WRITE state, latching the incremented value into a
transparent latch called DBUS_INC and initiating the write back of the incremented data to the
SRAM. The state machine will continue to toggle between the READ and WRITE state until the
desired number of data values have been histogrammed (determined by the size of the binary counter
called COUNT), at which point the SM will return to the IDLE state. Figure 2 shows the SM that we
will model.

The state machine is modeled in WaveFormer using one signal for each state. Next we will enter the
equations for the state machine, however these signals are not simulated until Section 5 because
signal DONE has not yet been defined.

1. Add 3 signals and name them IDLE, READ and WRITE.

2. For each signal, enter state machine Equation, select Simulate button, setup the clock and
trigger edge, and setup the set and clear signals as shown in the following pictures:

Timing Diagram Editor 6: Advanced Modeling and Simulation 103

Copyright © 2011, SynaptiCAD Sales, Inc.

Notice the display in the bottom right hand corner and notice that the state machine
signal names turned gray . This is because the IDLE and READ equations reference a signal called
DONE. This signal has not been defined so if you try to simulate you get errors. In the next section
we will investigate the different ways to detect and fix simulation errors.

(TD) 6.4 Checking for Simulation Errors

If you check the simulator log file, simulation.log in the Report window, you will see
an error message reporting that DONE is not declared. The log file also reports the lines in the
WaveFormer-generated Verilog source code file where this error occurred. The WaveFormer-
generated source file will have the same filename as your diagram, but with a file extension of .v
instead of .btim (so if your diagram is untitled.btim, the source code file is untitled.v). This source file
is automatically opened by the Report window whenever WaveFormer Pro generates this file (by
default this occurs every time you make a change to your design while simulating signals).

View the HDL lines where the errors occur:

1. Check the log file for the line number at which the error(s) occurred. In the Report window, click
on the simulation.log tab . When we ran the simulator, our error occured at line number 57
(your run may be different) , as indicated by the error message: C:\SynaptiCAD\UNTITLED.v:
L57: error: 'DONE' not declared

2. Click on the tab for the *.v file at the bottom of the Report window. This will open your source file
in the Report window.

3. Click inside the Report window, and press
<Ctrl>-G. This brings up the Go To Line
window. Enter 57 as the line number you
wish to jump to, and press OK.

4. As expected, these lines show the HDL
code that simulates the IDLE and READ
signals.

NOTE: Do not make changes in this source file as your changes will automatically be overwritten the
next time a simulation is performed; instead, we will make the appropriate changes in the Diagram
window and Signal Properties dialog.

SynaptiCAD Tutorials104

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 6.5 Incremental Simulation

One common problem in simulating and debugging digital systems is that large parts of the design
have to be entered before testing can begin because the parts provide input to each other. One
solution is to break a design up into pieces and test each piece with test vectors that represent the
output of the other pieces. However, generation of the test vectors can be time consuming.

SynaptiCAD products provide a very simple and quick method for testing small parts of a design:
graphically draw the signals for the missing parts of the design to test the design at its current state
of development. Then later add the design information that models these signals (in other words, we
temporarily model simulated outputs as drawn inputs).

We will now use this method below to verify the operation of our state machine before we enter the
HDL code that generates the DONE signal:

1. Add a signal called DONE.

2. Draw a low segment for 1.6 us, followed by high pulse that lasts for at least one clock cycle.
Click on Apply to run the simulation.

3. The diagram should now show the simulation output from your state machine. The simulated
signals are pink to distinguish them from graphically drawn signals.

Make sure everything is working properly:

1. First make sure that the simulation status indicators read Simulation Good. If
the indicators still show an error, then the simulation.log file will help you to pinpoint the error
in your diagram.

2. Next, check your diagram against the figure above to verify that your state machine is simulating
correctly.

3. If the simulation succeeded and there are still discrepancies in the output, check your design
equations and the input stimulus you’ve drawn (START and DONE signals).

Once you have the circuit simulating properly, let’s see what happens if the START pulse gets too
small:

1. Drag the falling edge of the START pulse back to approximate 140 ns (before the falling clock
edge at 150 ns). This step causes the state machine to stay in the IDLE state (the IDLE signal
stays high).

2. Double click on the falling START edge and enter a time of 160 into the Edge Properties dialog
to restore proper operation.

Timing Diagram Editor 6: Advanced Modeling and Simulation 105

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 6.6 Modeling Combinational Logic

In addition to the state signals, the state machine has one other output signal called ENABLE that is
used to enable the SRAM, the DONE counter, and the ADC. ENABLE is just the output of an OR
gate with the READ and WRITE signals as inputs. In Section 3 we used the Boolean Equation
interface to model the flip-flops of the state machine. We will use the same interface to model
combinatorial logic. To do this choose the default clock called unclocked. If a signal other then
unclocked is selected, then the Boolean Equation interface models registers or latches depending on
the type of Edge/Level trigger selected. Chapter 12 covers the advanced features of the Boolean
Equation interface including the min/max delay features.

Model the Enable logic:

1. Create a new signal called ENABLE.

2. Enter the equation: READ | WRITE into the Boolean Equation edit box in the Signal Properties
dialog.

3. Check the Simulate radio button.

4. Verify that ENABLE is the OR of READ and WRITE. If ENABLE did not simulate, use the
techniques found in section 4 to find your error. Remember that signal names are case-
sensitive.

5. Click OK to close the dialog.

(TD) 6.7 Entering Direct HDL Code for Simulated Signals

For simplicity, the counter output COUNT is modeled using a simple block of behavioral HDL Code
instead of using Boolean equations. It would take a large number of Boolean equations to model the
counter and the equations would be difficult to modify if the counter operation had to be changed. For
this tutorial we will create a 4-bit counter to test our system. This counter could be easily modified
later to make it 12-bit (to acquire 4K worth of data). To enter direct HDL code for the COUNT signal:

1. Create a signal called COUNT.

2. In the Signal Properties dialog, set the Radix to hex, its MSB to 3, and check the Simulate
radio button.

3. Press the Verilog radio button to switch from the Equation view to the HDL Code view/
editor.

4. Enter the Verilog code below in the HDL Code editor of the Signal Properties dialog (comments
begin with // and can be skipped during code entry). You can copy and paste the text into
WaveFormer instead of typing it (Select and copy to clipboard the source code below, then click
into the HDL Code window in WaveFormer and press <Ctrl>-V to paste the text):

reg [3:0] COUNTER; //declare a 4-bit register called COUNTER

always @(negedge CLK0) //on each falling edge of CLK0

 begin

SynaptiCAD Tutorials106

Copyright © 2011, SynaptiCAD Sales, Inc.

 if (ENABLE)

 COUNTER = COUNTER + 1; // count while ENABLE is high

 else

 COUNTER = 0; // synchronous reset if ENABLE is low

 end

assign COUNT = COUNTER; //drive wire COUNT with reg COUNTER value

5. Click the Simulate Once button to simulate the COUNT signal.

Note: All signals in WaveFormer are modeled as wires, so the assign is required at the end of the
HDL code block to drive the COUNT wire with the value of COUNTER (which must be a register in
order to remember its value).

To increase the size of the counter to acquire 4K data values (do not do this now), we could change
the MSB of COUNT to 11 and change the declaration of COUNTER in the HDL code to:

reg [11:0] COUNTER; //example only, don't do in this tutorial

[****]

(TD) 6.8 Modeling n-bit Gates

Next we will model the DONE signal that we originally drew as an input to the state machine. The
DONE signal is generated by performing a bitwise AND of the COUNT signal (we are done whenever
all the counter bits are high).

To model the DONE Signal:

1. Double click on the DONE signal name to open the Signal Properties dialog box.

2. Enter the following equation in the Boolean Equation edit box: &COUNT

3. Check the Simulate radio button. The resulting signal should look like the hand drawn signal
except that it is a purple simulated signal.

The & operator when used as a unary operator is called a reduction-AND operation. A reduction-AND
indicates that all the bits of the input signal should be ANDed together to generate a single bit output.
This is equivalent to the following equation: COUNT[0] & COUNT[1] & COUNT[2] & ...

One nice benefit of using a reduction operator instead of the above equation is that it automatically
scales the circuit to match the current size of the COUNT signal (it’s also a lot easier to type)!

(TD) 6.9 Incorporating Pre-written HDL Models into Waveformer
Simuations

We will use an SRAM HDL module contained in an external file (sram.v) to model the SRAM. This
model is fairly complex and accurately models the asynchronous interface that is commonly used by
most off-the-shelf SRAMs. One special feature is that the SRAM resets all its memory cells to zero
when it first starts up. In a real circuit, we would need to add extra logic to iterate through the
addresses, writing zeros at each one. A full description of the Verilog modeling of this SRAM is
outside the scope of this tutorial, but let’s take a quick look at it inside the Report window:

1. Select the Report > Open Report Tab menu option and open the file sram.v (located in the
SynaptiCAD\lib\Verilog directory). Verify that you can view the file in the Report window. Keep
this file open because we will be referring back to this file later in the tutorial.

106

Timing Diagram Editor 6: Advanced Modeling and Simulation 107

Copyright © 2011, SynaptiCAD Sales, Inc.

9.1 Including an external SRAM Verilog model file into WaveFormer

To add the SRAM model to our design we need to modify the wavelib_exact.v file that contains the
models used by WaveFormer. The SRAM model code cannot be entered into a signal’s HDL code
window because the model declares a module and modules cannot be nested in Verilog
(WaveFormer puts all the HDL code from signals into a single module called testbed). All user-written
Verilog modules should be declared in wavelib_exact.v (or preferably, included from separate files into
wavelib_exact.v using the include directive as will be doing). In this case, the source code for the
SRAM is already contained in a separate file called sram.v and we only need to add an include
statement to wavelib_exact.v to let WaveFormer know about it. To modify the wavelib_exact.v file:

1. Select the menu option Report > Open Report Tab and open the wavelib_exact.v file in the
SynaptiCAD\hdl directory.

2. Add the following line to the beginning of the wavelib_exact.v (it may already be there depending
on which SynaptiCAD product you are using): `include "lib\verilog\sram.v"

3. Select the Report > Save Report Tab menu option to save your change.

9.2 Instantiating the SRAM component models

To drive the data bus DBUS, we need to instantiate two instances of the SRAM model:

1. Create a new signal called DBUS.

2. Set the Radix to hex, set the MSB to 15, check the Simulate radio button, and select the
Verilog radio button.

3. Enter the following HDL code into DBUS’s HDL code window:

wire CSB = !ENABLE;

sram BinMem1(CSB,READ,ADDR,DBUS[7:0]);

sram BinMem2(CSB,READ,ADDR,DBUS[15:8]);

The first line creates an internal signal that is an inverted version of the ENABLE line (the SRAM is
active low enabled). The next two lines instantiate two 4Kx8 SRAMs and connect up their inputs and
outputs (the first SRAM contains the low byte of the count and the second contains the high byte).

(TD) 6.10 Modeling the Incrementor and Latch Circuit

In Section 3 we used the Boolean Equation interface to model the state machine using negative edge-
triggered registers. Now we will use the same interface to generate level-triggered latches used to
model the increment-and-latch circuit. The value stored in the SRAMs is placed on DBUS and the
incrementor circuit takes that value, adds one to it, and latches the incremented value:

1. Create a new signal called DBUS_INC.

2. Enter the following equation into the Boolean Equation edit box: DBUS + 1

3. Choose the READ signal from the clock drop-down list box.

4. Choose high from the Edge/Level drop-down list box. This selects the type of latch to be used.

5. Set Radix to hex, MSB to 15, and check the Simulate radio button.

6. Press the Simulate Once button and verify that DBUS_INC is an incremented version of DBUS.
If DBUS_INC did not simulate, use the methods in section 4 to determine the error.

SynaptiCAD Tutorials108

Copyright © 2011, SynaptiCAD Sales, Inc.

(TD) 6.11 Modeling Tri-State Gates

There are 2 possible drivers for DBUS: the SRAMS which we modeled in section 9, and the tri-stated
output of the DBUS_INC signal. All the drivers for a bus should be included in the code for the bus.

To add the tri-state gate to DBUS:

1. Double click on the DBUS signal name to open the Signal Properties dialog box.

2. In the direct HDL code edit box add a 4th line of HDL code to DBUS:

assign DBUS = WRITE ? DBUS_INC : 'hz;

Line 4 models the tri-state gates that follow the latches in the histogram circuit. These tri-state gates
are enabled whenever the WRITE signal is high. We use the conditional operator (condition ? x : y)
which acts like an if-then-else statement (if condition then x else y). If WRITE is high, DBUS is driven
by DBUS_INC (the incremented version of DBUS that we latched), else the tri-state drivers are
disabled (‘hz means all bits are tri-stated).

(TD) 6.12 Debugging External Verilog Models

Verilog contains two system tasks (commands), $display and $monitor, that can be included in
Verilog source files for debugging purposes. $display acts like a C-language printf statement which
prints to the simulation log file simulation.log whenever it is executed by the Verilog simulator.
$monitor is similar, but it automatically prints to the log file whenever any of the signals listed in this
command change state. The SRAM model file sram.v contains two $display statements that output
the address and data values for the SRAM whenever the SRAM is read from or written to (you can
view the $display commands in sram.v in the Report window). You can see the output of the
$display commands by viewing simulation.log in the Report window. Each time the SRAM performs
a read or write a message is sent to the log file.

(TD) 6.13 Verify the Histogram Circuit

At this point we have modeled the entire histogram circuit, so your diagram should resemble the
figure below. If it doesn’t, check the simulation.log for errors and correct as necessary. The output
of the $display commands will be particularly useful if you are getting x’s on your DBUS signal which
indicates unknown data is being read from your RAMs. One thing to check for is that your diagram is
never performing a write to an unknown address (an address containing x's) in your RAM bank. If you
write a value to an unknown address, the memory model has no way of knowing which memory
location has been changed. Therefore, all the memory locations in the entire address space of the

Timing Diagram Editor 6: Advanced Modeling and Simulation 109

Copyright © 2011, SynaptiCAD Sales, Inc.

RAM bank may or may not have been changed. The memory model is forced to represent this
unknown state by setting all memory locations in the SRAM to x!

Figure 3: Completed Timing Diagram

(TD) 6.14 Controlling the Length of the Simulation

By default, WaveFormer simulates to the last drawn signal edge. You can also use a time marker to
control the length of the simulation. To place a time marker:

1. Click the Marker button found on the button bar. This turns the Marker button red which
indicates that right clicks in the Diagram window will add marker lines.

2. Right click at about 1us in the Diagram window. A new time marker line will appear.

3. Double click on the marker to open the Edit Time Marker dialog.

4. Set the marker type to End Diagram.

5. Click OK to close the dialog, then drag the marker on the screen. As you move the marker, the
simulator will automatically resimulate the design up to the time location of the marker.

(TD) 6.15 Editing Verilog Source Files

To demonstrate how to make changes to a Verilog source file inside WaveFormer, we will edit the
SRAM model file sram.v in the Report window:

1. Change line 18 from: ram[i] = 0; To ram[i] = 8;

This causes the SRAM cells to be initialized with 8 instead of zero.

2. Select the Report > Save Report Tab menu option to save your change.

Let's see the effect of this change:

3. Press the Simulate Once button in the Signal Properties dialog, or move an input edge. Either
of these steps initiates a resimulation.

You may have anticipated that DBUS would now show 8 (we did when we first did this tutorial!), but it

SynaptiCAD Tutorials110

Copyright © 2011, SynaptiCAD Sales, Inc.

is correct in showing 808 because our DBUS is a 16-bit value composed of the data in two parallel
SRAMs each initialized with 08 (hence 0808 = 808).

4. Reset the line back to ram[i] = 0;

(TD) 6.16 Simulating Your Model with Traditional Verilog
Simulators

The Verilog model of your system created by WaveFormer can also be simulated by traditional
Verilog simulators. The complete verilog model simulated by WaveFormer is composed of (1) the
verilog file generated by WaveFormer (untitled.v for this tutorial), (2) the WaveFormer library file
wavelib.v, and (3) any external model files you have included (e.g. sram.v for this tutorial). Follow
the instructions of your Verilog simulator to simulate these files together.

(TD) 6.17 Summary

This concludes the advanced simulation tutorial. Other simulation features not covered in this tutorial
that you may wish to experiment with are: flip-flop timing characteristics (clock to output propagation
delay and continuous setup and hold time checking) in the Signal Properties Dialog and the global
simulation options in the Options > Simulation Preferences Dialog.

Test Bench Generation 1: VHDL-Verilog Stimulus 111

Copyright © 2011, SynaptiCAD Sales, Inc.

Test Bench Generation 1: VHDL-Verilog Stimulus

This tutorial describes how to generate Verilog and VHDL basic stimulus test benches using
WaveFormer Pro, VeriLogger, Reactive Test Bench Option, and TestBencher Pro. It explores how
different waveforms and state values in a timing diagram will affect the generation of the test bench
code. It also explores the SynaptiCAD language-independent signal types which allow a single timing
diagram to generate both VHDL and Verilog test benches.

SynaptiCAD offers three levels of test bench generation. This tutorial demonstrates the basic level
stimulus based test benches that are generated by the default configuration of WaveFormer Pro and
BugHunter Pro with VeriLogger. Purchasing the add-on Reactive Test Bench Option allows users to
create more advanced self-testing test benches which generate error reports and react to the model
under test during simulation. This feature is demonstrated in the tutorial Test Bench Generation 2:
Reactive Test Bench Option . The highest level of testbench generation is provided by TestBencher
Pro, which allows a user to design bus functional models using multiple timing diagrams and a
sequencer process to apply the diagrams. TestBencher can be added to BugHunter or purchased as
a standalone product and is demonstrated in the tutorial Test Bench Generation 3: Test Bencher Pro
Basic Tutorial .

(TBench) 1.1 Load the Tutorial Timing Diagram

This tutorial requires a full version license of WaveFormer Pro, BugHunter Pro, or Test Bencher Pro
because you will need to generate the test bench and save files. Timing Diagrammer Pro cannot
generate test benches. To obtain a temporary license for evaluation purposes, complete the form
under the Help > Request License menu item and contact our sales department.

Run WaveFormer Pro, BugHunter Pro, or Test Bencher Pro:

Run one of the above programs from the Start Menu.

Load the starting Timing Diagram:

Select the File > Open menu option and load the file tuthdl.btim from the
SynaptiCAD\Examples\TutorialFiles\AdvancedHDLStimulusGeneration directory.

122

142

SynaptiCAD Tutorials112

Copyright © 2011, SynaptiCAD Sales, Inc.

The first signal, CLK0, is a clock with a period of 50ns. The second signal, SIG0, is a waveform that
contains all of the graphical states available in WaveFormer Pro. The third signal, VirtualBus, is a
waveform drawn with valid and tri-state segments that you will add values to in the next section. The
blue icons pointing to the left mean that the signals are outputs of the test bench and will be exported
when you generate the code.

Save the starting Timing Diagram:

Select the File > Save As menu option and save the timing diagram as test.btim (this will
keep the original file intact).

(TBench) 1.2 Hex and Binary State Values

SynaptiCAD's timing diagram editing environments use a language independent bus format for
hexadecimal and binary bus values so that one diagram can generate a valid test benches for both
VHDL and Verilog simulators. During test bench generation, single-bit signals generate code that
matches the graphical state.

Buses (multi-bit signals) use one of two methods to generate code. First, if a segments value begins
with a 'b or 'h then it is assumed that the number is a binary or hexadecimal number and the number
will be translated to the appropriate VHDL or Verilog bus value (regardless of the radix of the signal). If
the extended state value does not start with 'b or 'h then the value is written out as it was entered,
without any translation. This means that if a state has a value of 10 and a radix of Hexadecimal, the
effective value of the segment is 16 decimal. And if a state has a value of 10 with a radix of Binary,
the effective value of the segment is 2 decimal.

Set the size and radix of the VirtualBus bus signal:

Double click on the VirtualBus
signal name to open the Signal
Properties dialog.

Make it an 8 bit bus by typing 7
into the MSB box and 0 into the
LSB box.

Set the Radix to binary.

Also notice that Export Signal is
checked so the signal will be
exported and that it has a
direction of output so it will drive
the model under test.

Close the Signal Properties dialog.

Test Bench Generation 1: VHDL-Verilog Stimulus 113

Copyright © 2011, SynaptiCAD Sales, Inc.

Setting the values in a virtual bus waveform:

Select the first waveform
segment of VirtualBus by
clicking on it. A selected
segment has a box around it.

Click on the HEX button at the top of the window to open the Edit Bus
State dialog box. The Edit Bus State dialog box can also be opened by
double-clicking on the selected segment.

Type 'b11101110 into the Virtual edit box (this is
an 8-bit binary number).

Press ALT-N (or press the Next button) two times
to advance to the next valid segment

Type 'hA into the Virtual edit box (this is an 8-bit
hexadecimal number equal to 00001010 in binary).
The program automatically left pads missing bits
with zeros.

Press OK to close the Edit Bus State dialog. The waveform should look like the following.

(TBench) 1.3 Export a Verilog Test Bench

Test benches can be generated by both the File > Save Timing Diagram As and the Export >
Export Timing Diagram As menus. However the File menu always defaults to the SynaptiCAD
BTIM format. Once you setup the Export menu to the settings for your favorite export format, it will
default to that format. If you are a VHDL-only person you can skip this and go to the next section.

Generate the Verilog Test Bench:

Choose the Export > Export
Timing Diagram As menu
option to open the Export
dialog.

SynaptiCAD Tutorials114

Copyright © 2011, SynaptiCAD Sales, Inc.

In the Save as Type list box in
the lower left corner of the
dialog, choose the Verilog (*.
v) script. This indicates that the
timing diagram will be exported
to a Verilog code file with a
default file extension of ".v".

Choose test.v as the file name and click the Save button to close the dialog. WaveFormer
Pro will produce a Verilog file named test.v.

The file test.v is automatically displayed in the Report window. If you cannot see the Report
window, select the Window > Report Window menu option to bring the window to the top.

Compare the Code to the Diagram:

At the top of the file there is a large comment section that describes how the code was
generated, what the clocking domains are, and what program features were used to generated
the code. In the basic testbench generation, all signals are in the Unclocked domain (all
signals are delayed by time values). With the reactive test bench option, you can delay
signals based on the occurrence of clock edges as well.

Notice that each of the output signals in the diagram are also outputs of the generated
stimulus module. These signals will hook up to your model under test.

Test Bench Generation 1: VHDL-Verilog Stimulus 115

Copyright © 2011, SynaptiCAD Sales, Inc.

CLK0 is defined as a clock
signal in the timing diagram. The
program generates a loop to
represent the clock (rather than
a series of assignment
statements for each edge). Also
notice that all of the clock
properties such as buffer delay
and rise and fall jitter will
generate proper code.

Compare the signal waveforms to the generated code. Notice that the undefined valid state on
SIG0 generates to 1'bx, but the defined valid states on Virtual bus generate out to the proper
values.

(TBench) 1.4 Signal Data Types and VHDL user defined types

SynaptiCAD's tools use a language independent signal type so that one timing diagram can generate
code for both VHDL and Verilog test benches. Double click on a signal name to open the Signal
Properties dialog and the Signal Type box shows the signal's type. Below is a table that shows the
translation between the types.

SynaptiCAD Verilog VHDL
4_state reg std_logic
4_state_vector reg std_logic_vector
bool reg boolean
2_state reg bit
2_state_vector reg bit_vector

SynaptiCAD Tutorials116

Copyright © 2011, SynaptiCAD Sales, Inc.

byte reg bit_vector
int integer integer
unsigned_int integer natural
real real real
fixed_len_string reg string
variable_len_string
time time time
event event
std_logic std_logic
std_logic_vector std_logic_vector
std_ulogic std_ulogic
std_ulogic_vector std_ulogic_vector
signed_logic signed
unsigned_logic unsigned
actel_current_delta reg std_logic
actel_temperature reg std_logic
actel_voltage reg std_logic
actel_voltage_common reg std_logic
actel_voltage_delta reg std_logic

The Signal Type box also supports VHDL user-defined types that can be directly entered into the
box. By default all signals are assumed to have a type of std_logic and a direction of out (CLK0,
SIG0, and VirtualBus will use the defaults for this tutorial). In this section you will add SIG1 and SIG2
to demonstrate signals with a standard integer type and a user defined type.

Add SIG1 and SIG2

Click on the Add Signal button
two times to add two signals.

Press the VAL button two times (not a double click). The first click selects Valid as the initial
graphical state, and the second click selects Valid as the toggle state (as indicated by the
red T). This causes the VAL button to stay selected when you draw waveform segments.

Sketch some valid waveforms for SIG1 and SIG2 similar to those in the figure below.

Test Bench Generation 1: VHDL-Verilog Stimulus 117

Copyright © 2011, SynaptiCAD Sales, Inc.

Change the type of SIG1 to integer and add values to the waveform:

Double-click on the SIG1 signal
name to open the Signal Properties
dialog.

Choose integer from the Signal
Type box.

Choose dec from the Radix box to
indicate that the values you will be
entering into the virtual state are
decimal values.

Press OK to close the dialog.

Double-click on the first waveform
segment on SIG1 to open the Edit
Bus State dialog.

Enter integer values for each
segment (we used 25, 50, 47). Use
the Next button to move between
segments.

Change the type of SIG2 to MyColor and add values to the waveform:

Next we will add a user defined data type called MyColor. For a real VHDL simulation, the user
defined type and the color value of the waveforms would have to match the code in the model under
test. For instance, MyColor might be defined as: enum MyColor ={RED, GREEN, BLUE, BLACK} in
the model under test code.

Double-click on the SIG2 signal
name to open the Signal Properties
dialog.

Type in MyColor into the Signal
Type box. MyColor is the name of
the user defined type that we will
use.

Press OK to close the dialog.

Double-click on the first waveform
segment on SIG2 to open the Edit
Bus State dialog.

Enter some color value for each
segment (we used RED, GREEN,
BLUE).

Click OK to close the dialog

Your timing diagram should resemble the figure below.

SynaptiCAD Tutorials118

Copyright © 2011, SynaptiCAD Sales, Inc.

(TBench) 1.5. Export a VHDL Test Bench

Next we will export to a VHDL test bench. If you are a Verilog only person, you can generate a
Verilog test bench instead and investigate how the integer signal got exported to Verilog.

Generate the VHDL Test Bench:

Choose the Export > Export
Timing Diagram As menu
option to open the Export
dialog.

In the Save as Type list box in
the lower left corner of the
dialog, choose the VHDL (*.
vhd) script. This indicates that
the timing diagram will be
exported to a VHDL code file
with a default file extension of ".
vhd".

Choose test.vhd as the file name and click the Save button to close the dialog. WaveFormer
Pro will produce a VHDL file named test.vhd.

The file test.vhd is automatically displayed in the Report window. If you cannot see the Report
window, select the Window > Report Window menu option to bring the window to the top.

Test Bench Generation 1: VHDL-Verilog Stimulus 119

Copyright © 2011, SynaptiCAD Sales, Inc.

Compare the Code to the Diagram:

View the file test.vhd inside the Report window. Notice the entity and architecture structures and the
types of all the signals. CLK0 uses a while loop to calculate its value. SIG0 shows how the graphical
states are exported. VirtualBus is defined as an 8-bit logic vector. SIG1's values are exported as
integers. SIG2's values are exported as RED, GREEN, and BLUE.

At the top of the file there is a large comment section that describes how the code was
generated, what the clocking domains are, and what program features were used to generated
the code. In the basic testbench generation, all signals are in the Unclocked domain (all
signals are delayed by time values). With the reactive test bench option, you can delay
signals based on the occurrence of clock edges as well.

Notice that each of the output signals in the diagram are also inout of the stimulus entity.
These signals will hook up to your model under test.

SynaptiCAD Tutorials120

Copyright © 2011, SynaptiCAD Sales, Inc.

CLK0 is defined as a
clock signal in the
timing diagram. The
program generates a
loop to represent the
clock (rather than a
series of assignment
statements for each
edge). Also notice
that all of the clock
properties such as
buffer delay and rise
and fall jitter will
generate proper
code.

Compare the signal waveforms to the generated code. Notice that the undefined valid state on
SIG0 generates to 1'bx, but the defined valid states on Virtual bus generate out to the proper
values.

Test Bench Generation 1: VHDL-Verilog Stimulus 121

Copyright © 2011, SynaptiCAD Sales, Inc.

(TBench) 1.6 Summary of VHDL-Verilog Stimulus Tutorial

Congratulations, you have now completed the VHDL-Verilog Stimulus Tutorial. You have generated
both a VHDL and a Verilog test bench using the Export > Export As menu function. You have
investigated the language independent waveform state values and the signal data types. And you have
used the Report window to view the generated code. For more information on the basic VHDL/Verilog
generation please refer to the Timing Diagram Editor Manual Chapter 4: Simulated Signals and VHDL/
Verilog Export.

SynaptiCAD Tutorials122

Copyright © 2011, SynaptiCAD Sales, Inc.

Test Bench Generation 2: Reactive Test Bench Option

The Reactive Test Bench Generation Option can be added to WaveFormer Pro, DataSheet Pro,
VeriLogger, and BugHunter Pro. The features are included in TestBencher Pro, so it is also a good
introduction to creating a single timing transaction in TestBencher Pro. With Reactive Test Bench
Generation, users can draw "expected" waveforms on the MUT output ports and add "samples" to the
waveforms to test for specific state values. During simulation, the code generated by the samples
would watch the output from the model under test and compare it to the drawn waveform states.
Samples can perform a variety of functions such as pausing the simulation to debug a problem,
reporting errors and warnings, user-defined actions, and triggering other samples.

(TBench) 2.1 Run Program with Reactive Test Bench Option

This tutorial requires a Reactive Test Bench Generation license plus a license for one of the
SynaptiCAD products that supports this feature. To obtain a temporary license for evaluation
purposes, complete the form under the Help > Request License menu item and contact our sales
department.

Run WaveFormer Pro, BugHunter Pro, WaveFormer Lite (Libero) or Test Bencher Pro:

If you are using the Actel Libero tool set, skip this step because you will be launching WaveFormer
Lite from within Libero as described in the next section.

Run one of the above programs from the Start Menu.

(TBench) 2.2 Create a Project to hold the MUT

First, create a project file to hold the model under test. This will allow WaveFormer to extract the
information necessary to instantiate the model under test inside the testbench and extract the input
and output ports from the model under test. The model under test in this tutorial is a Verilog file, so
we will be generating a Verilog test bench, but the diagram and the design flow is the same for a
VHDL test bench and you can generate a VHDL test bench from the extracted signal information.

Test Bench Generation 2: Reactive Test Bench Option 123

Copyright © 2011, SynaptiCAD Sales, Inc.

Non-Libero users create a SynaptiCAD Project and add the Model Under Test:

Choose Project > New
Project menu function to open
the New Project Wizard
dialog.

In the Project Name box, type
in reactivetut as the name of
the project. This will become
both the name of the project
and the directory where the
project and associated files are
stored.

Choose Verilog as the
Project Language.

Click the Finish button to
create the project and close
the dialog.

In the Project window, under
the Source Files section, right
click and choose Copy New
Source Files from the context
menu. The picture shows
WaveFormer's interface.
BugHunter and TestBencher
projects have a User Source
Files folder that you can right
click on. This will open a file
open dialog.

Select mymut.v from the SynaptiCAD\Examples\TutorialFiles\ReactiveTestBench
directory and close the dialog to copy the file to the project directory.

Actel Libero users only:

Create a project inside Libero following the steps in the Libero documentation, add the source file
mymut.v from the SynaptiCAD\Tutorials\ Reactive Test Bench directory, and launch WaveFormer
Lite. This will automatically create a WaveFormer project file and add your source files to that project.

SynaptiCAD Tutorials124

Copyright © 2011, SynaptiCAD Sales, Inc.

Investigate the Model Under Test

In the Project window, double click on
the mymut.v to open an Editor window
which displays the model under test
source code.

We will use a simplified version of a PCI slave device as the model to be tested. No experience with
PCI is required to perform and understand this tutorial. There is no arbitration, the MUT responds to
all addresses, and the only valid commands are single reads and writes. It contains a memory that
can be written to and read from and has the following ports (all control signals are active low):

CLK (input): the mymut device is clocked on the positive edge

FRAME (input): indicates start of transaction.

WRITE (input): indicates write transaction.

IRDY (input): stands for initiator ready. Indicates when the master device is ready for
transaction to complete (the master will be the test bench in this case).

TRDY (output): stands for target ready. During a write, this indicates that the MUT has
finished writing data to it's memory. During a read, this indicates that the MUT has read
the data from memory and put it on the DATA bus.

ADDR (output): Address to write to or read from.

DATA (inout): Data to write to memory or data that is read from memory.

Each transaction consists of an address cycle and data cycle. During the address cycle, the WRITE
and ADDR signals must be valid. During a write data cycle, the DATA signal must be valid before
IRDY is asserted. Then the MUT indicates that it is finished storing the data by asserting TRDY.
During a read data cycle, the MUT must drive DATA before asserting TRDY. Then, the master
asserts IRDY when it is finished reading the data. Once IRDY or TRDY is asserted, they must remain
asserted until the transaction is finished which is indicated by the de-assertion of FRAME.

(TBench) 2.3 Extract Signal Names and setup the Clock

Next we will extract the signal names, types, and size from the port information contained in the
mymut.v file.

Test Bench Generation 2: Reactive Test Bench Option 125

Copyright © 2011, SynaptiCAD Sales, Inc.

Extract MUT ports into Diagram

Press the Extract MUT ports
into Diagram button on the
main window button bar to
extract the top level ports from
mymut.v and dump them into a
timing diagram window. Notice
that these ports match the
signals in the mymut.v code

Convert the CLK signal into a SynaptiCAD Clock Signal:

The Extract MUT Ports function imports all the port signals into SynaptiCAD Signals. However, we
would like the clock to draw itself based on a frequency. To do this we need to covert the CLK signal
into a CLK clock.

Right-click on the CLK label
name and select Signal <->
Clock from the context menu.
This will convert the signal to a
clock, and draw a clock
waveform with a default
frequency of 10MHz.

The default clock values are fine
for this tutorial, but if you want to
look at the Clock Properties,
double click on the clock
waveform to open the Edit Clock
Parameters dialog. Close it when
you are done.

Set the default Clock Signal to make a cycle based test bench

Next set the Clock signal and Edge for all of the signals in the diagram so that the test bench will be
cycle-based instead of time-based (this means the test bench stimulus will change after waiting on
clock transitions instead of time delays).

Right-click on a signal name and
select TestBencher Diagram
Properties context menu to
open a dialog of the same name.

SynaptiCAD Tutorials126

Copyright © 2011, SynaptiCAD Sales, Inc.

In the Default Clock drop down,
select CLK as the default
clocking signal to use and set
the Edge dropdown as pos to
specify positive-edge clocking.

Click the Update Existing
button to set the clocking signal
for existing signals. Press OK to
close the dialog.

That dialog set the clock signal
for every normal signal in the
diagram. This could have been
done individually by double
clicking on each signal name to
open the Signal Properties dialog
and setting the controls there.
The individual settings are used
when you have multiple clocking
domains.

Examine the difference between a cycle-based and time-based test bench:

Following is a code example of the difference between a cycle-based and time-based test bench.
Both of these code segments were exported from the diagram you will be drawing in the next step.
Signals with the same clocking signal and edge type will be driven by a common process in the
generated code. We call a process of this type a Clocked Sequence. All the unclocked signals are
driven by the Unclocked Sequence. This means that when a diagram contains signals with different
clocking signals, a separate sequence process will be created for each clocking signal/edge type.
Clocked Sequences are named based on the clocking signal and the edge type, so for this example,
the clocked sequence that contains the code on the right will be called CLK_pos.

Time Based Code Cycle-based Code

#137;

FRAME_driver <= 1'b0

#3;

WRITE_driver <= 1'b0

ADDR_driver <= 8'h00

#100;

WRITE_driver <= 1'b1

IRDY_driver <= 1'b0;

ADDR_driver <= 8'hxx

DATA_driver <= 8'hAA

#100;

repeat (2)

begin

 @(posedge CLK);

end

FRAME_driver <= 1'b0;

WRITE_driver <= 1'b0;

ADDR_driver <= 8'h00;

@(posedge CLK);

WRITE_driver <= 1'b1;

IRDY_driver <= 1'b0;

ADDR_driver <= 8'hxx;

DATA_driver <= 8'hAA;

@(posedge CLK);

FRAME_driver <= 1'b1;

Test Bench Generation 2: Reactive Test Bench Option 127

Copyright © 2011, SynaptiCAD Sales, Inc.

FRAME_driver <= 1'b1

IRDY_driver <= 1'b1;

DATA_driver <= 8'hzz

#101;

IRDY_driver <= 1'b1;

DATA_driver <= 8'hzz;

@(posedge CLK);

(TBench) 2.4 Draw Stimulus Waveforms and Export Test Bench

First we will draw a write transaction, and export it as a simple stimulus based testbench. This
transaction ignores the TRDY signal (an input to the testbench) and doesn't verify that the data was
actually written successfully to the MUT. We will add that functionality in the next step.

Draw or Load the write cycle timing diagram:

Quickly sketch the waveforms into diagram that we have been working with. If you have trouble
drawing the waveforms, please review the Basic Drawing and Timing Analysis Tutorial
before continuing with the rest of this tutorial.

Or load the completed write cycle timing diagram draw_single_write.btim located in the
SynaptiCAD\Examples\TutorialFiles\ReactiveTestBench\Completed Diagrams directory.

Export a Verilog or VHDL test bench:

As you proceed through this tutorial, you will periodically generate the test bench to see how the
generated code changes as the timing diagram is edited.

Choose the Export > Export
Timing Diagram As menu
option to open the Export
dialog.

10

SynaptiCAD Tutorials128

Copyright © 2011, SynaptiCAD Sales, Inc.

In the Save as Type list box in
the lower left corner of the
dialog, choose either the
Verilog or Verilog w/ Top
Level Test Bench. The Verilog
script just generates the test
bench code. The Top Level Test
Bench also includes an
instantiation of the model under
test.

Choose draw_single_write.v as the file name and click the Save button to close the dialog
and generated a test bench called draw_single_write.v.

The file draw_single_write.v is automatically displayed in the Report window. If you cannot
see the Report window, select the Window > Report Window menu option to bring the
window to the top.

View the generated code in the Report window. Notice that the comment at the top of the file
shows that Reactive Export is enabled (if this is missing contact SynaptiCAD and get a
license for this feature).

Also notice that code also shows that all of the signals are in the CLK_pos clock domain. We
set this in the previous section when we set the clocking signal and edge.

Test Bench Generation 2: Reactive Test Bench Option 129

Copyright © 2011, SynaptiCAD Sales, Inc.

Scroll through the code and quickly compare the code to the drawn waveforms.

(TBench) 2.5 Draw Expected Waveform and Wait for the
Assertion

In this step we will sketch an expected TRDY waveform that the model under test should produce
when it successfully completes the write cycle. We also want the test bench to pause until TRDY
goes low before driving the rest of the stimulus. There are two different ways to create the pause.The
first method uses a Sample which will pause until either the assertion happens or the sample
timeouts. The other method uses the Sensitive Edge feature and will wait indefinitely for TRDY to
assert. Both methods are explained below.

Draw the Expected Waveform for the TRDY signal

First draw the expected TRDY waveform shown below. Notice that the waveform is blue
because it is an input to the diagram, so the data shown is predicted data, not data to be
driven. The direction of the signal was imported during the extract ports from mut step and is
shown by the blue icon pointing to the right.

Method 1) Wait with a Timeout Using a Sample

This first method uses a graphical sample to wait on an incoming edge. The sample can also specify
a timeout so the test bench does not hang-up during an error condition.

Press the Sample button so that right clicks
will add delays.

Left-click on the rising edge of CLK at 300ns
to select the edge, then right-click on TRDY
at 300ns (or slightly later than 300 ns). This
will add a sample to the diagram.

Double-click on the new sample's name to
open the Sample Properties dialog.

SynaptiCAD Tutorials130

Copyright © 2011, SynaptiCAD Sales, Inc.

Change the name to WaitForTRDY,
then click on the HDL Code button
in the Sample Properties dialog to
open the Code Generation Options
dialog.

This dialog controls the
code that the Sample
Generates. Take a look
at each of the controls.

Uncheck the Full
Expect check box to
indicate TRDY only has
to assert at some time
during the sample’s
execution.

Specify 100 for the
Multiplier to make the
sample wait for up to
100 cycles of the clock
since TRDY is a
clocked signal.

Check the Blocking
check box so that the
sample blocks the
transaction until the
sample finishes.

Close both dialogs.

Export the the test bench using the Export > Export Timing Diagram as menu as shown in

Test Bench Generation 2: Reactive Test Bench Option 131

Copyright © 2011, SynaptiCAD Sales, Inc.

Section 2.4.

Click into the Report Tab that contains the generated code to select the window.

Then use the
Search box on the
button bar to locate
the CLK_pos
sequence (in verilog,
search for "task
CLK_pos", in VHDL
search for "
CLK_pos :").

Then search down for "WaitForTRDY" to see the code generated for the sample.

This Method demonstrated a way to make the signal wait on a single event with an optional
timeout. Click on the sample WaitForTRDY to select it and press the DELETE key to remove
the sample so that we can demonstrate a different method in the next section.

METHOD 2) Wait Indefinitely Using Sensitive Edges

A signal can be set to have sensitive edges, so that the test bench will wait on every falling or rising
edge that the model under test generates. Here we will edit TRDY’s properties so that the test bench
will wait until TRDY has a falling edge before continuing to supply stimulus to the model under test.

Double-click on TRDY to open
the Signal Properties dialog.

Check the Falling Edge
Sensitive check box, and
press OK to close the dialog.

Notice that TRDY now has an
arrow drawn on the falling
edge, to indicate that it is
falling edge sensitive.

Make sure that the falling edge of TRDY is drawn after the falling edge of IRDY, otherwise the
test bench will wait for TRDY to assert before asserting IRDY.

Export the the test bench using the Export > Export Timing Diagram as menu as shown in
Section 2.4.

Click into the Report Window Tab that contains the generated code to select the window.

SynaptiCAD Tutorials132

Copyright © 2011, SynaptiCAD Sales, Inc.

Then use the Search
box on the button bar
to locate the CLK_pos
sequence (in verilog,
search for "task
CLK_pos", in VHDL
search for "CLK_pos :"
).

Then search down for
"Sensitive" to view the
code generated for the
sensitive edge. You
should see code similar
to the following:

VHDL: -- Sensitive Falling Edge on signal: TRDY

wait until falling_edge(TRDY) or (tb_DgmAborted);
Verilog: // Sensitive Falling Edge on signal: TRDY

 @(negedge TRDY);

(TBench) 2.6 Draw a Read Cycle and Verify the read

In this section, we will draw a read cycle and define the bidirectional segment on the DATA signal.

Draw the Waveforms for the Read cycle

Either load the completed read cycle timing diagram draw_single_read.btim located in the
SynaptiCAD\Examples\TutorialFiles\ReactiveTestBench\Completed Diagrams directory.

Or draw the waveforms for the read which starts at 400ns. (See the instrutions below for
making the multi-colored Data signal).

Draw the Waveforms for the Read cycle:

To avoid bus contention, the test bench must not drive the DATA bus during the read cycle, because
the MUT will be driving that bus. Since the DATA bus is a bi-directional signal, you can specify which

Test Bench Generation 2: Reactive Test Bench Option 133

Copyright © 2011, SynaptiCAD Sales, Inc.

parts of the waveform are driven by the test bench and which are not. One-way to do this is to draw a
tri-state waveform. However, in this case we need to specify the expected data on the bus, so we will
have to disable the drive on the expected value segments.

Double-click on the waveform
segment of DATA that
happens during the read cycle
to open the Edit Bus State
dialog.

Uncheck the Driven check
box and click OK.

Notice that the segment will be drawn in blue now, indicating that the DATA signal will not be
driven by the test bench during this time period (just like the entire TRDY signal).

(TBench) 2.7 Add a Sample to Verify Data Read from MUT

Samples can be used to verify data that is generated by the model under test during simulation. Here
we will add a Sample to the Data bus to verify that the read cycle worked correctly.

Add a Sample to verify the read cycle:

Press the Sample button so that right clicks will
add delays.

Left-click on the positive CLK
edge at 600ns, then right-click
on the DATA segment directly
below it (slightly to the right).
This will place a Sample that
will trigger at that clock edge
and verify that the data read
from the MUT is what we
expect (indicated by the
waveform drawn under the
Sample).

Double-click on the Sample
name to open the Sample
Properties dialog.

Change the sample name to
VerifyDataRead

Press the HDL Code button to
open the Code Generation
Options dialog.

SynaptiCAD Tutorials134

Copyright © 2011, SynaptiCAD Sales, Inc.

The If condition should
be set to Sample State
Matches, which is the
default behavior for a
sample.

Set the Then Action, to
Display Message so that
each time the sample
passes it will generate a
log messages stating
that it passed. And give it
a warning level of Note.

The Else Action should
be set to Display
Message so that each
time the sample fails it
will generate a log
message stating the
error.

Press OK to close both
dialogs.

Here is what the diagram should look like after adding the Sample:

To see the generated code, export the test bench and view the code in the Report tab that contains
the generated code. Locate the CLK_pos sequence, then search down for VerifyDataRead to see
the code generated for the sample.

Test Bench Generation 2: Reactive Test Bench Option 135

Copyright © 2011, SynaptiCAD Sales, Inc.

(TBench) 2.8 Drive Waveform Values using a File

This step will use an ASCII input file to drive the DATA bus during the write cycle so that we can
model a memory array. The basic idea is to create a user-defined array variable that is initialized from
a file containing the values stored in the memory, then drive the DATA bus using the values of this
array (using the current address value as the index for the array).

View the Input File:

Waveform data values can be driven from a file that is in SynaptiCAD's spreadsheet format as defined
in the Timing Diagram Editor Manual Section 11.11 Import from Spreadsheets. Basically the
[Vectors] section is a tab separated format, where each column is a different variable. We have
already created the file to save time, but you can view it.

Choose the Report > Open Report Tab menu to open a file dialog. Set Files of
Type to text (*.txt).

Browse to the
SynaptiCAD\Examples\TutorialFiles\ReactiveTestBench\inputData directory
and select inputData.txt then press the Open button to open the file in the report
tab.

SynaptiCAD Tutorials136

Copyright © 2011, SynaptiCAD Sales, Inc.

Create a Variable and Link it to a file:

Click the View Variables button
in the diagram to open the
Variable List dialog.

Press the New Variable button, then click on the name and change it to
inputData. This name is important because it must match a column name in the
input file that we choose.

Under the Structure column double click and select array.

Set Size to 256 to indicate that we are creating an array of 256 elements.

Set Data Type to 2_state then change MSB to 7 (this indicates we’re storing 8-bit
values in the array).

Check the Initialize Structure With File checkbox near the bottom of the dialog.

Browse to the
SynaptiCAD\Examples\TutorialFiles\ReactiveTestBench\inputData directory
and select inputData.txt.

Press OK to close the dialog

Make the diagram reference the variable:

In the previous step we created an array variable called inputData that hooks up to a file that has a
column titled inputData. Here we will make the DATA signal use the array to supply the signal
values for both the write and the read cycles. In the next two sections we will add a variable called
address which will be used to move through the array and a loop so that multiple write-read cycles
can be performed without having to draw the transaction over and over again.

Double-click on one of the AA states
to open the Edit Bus State dialog then
press the Variable button to open
the Select Variable dialog.

Test Bench Generation 2: Reactive Test Bench Option 137

Copyright © 2011, SynaptiCAD Sales, Inc.

Select the inputData
variable, then press
the Insert Into
Equation button. This
puts the variable into
the Virtual box of the
Edit Bus State dialog,
so that you do not
have to remember the
exact syntax of the
variable.

Edit the equation so that it says
@inputData[address].The @
symbol is used to refer to a variable
defined in the Variable List dialog.
The address variable will be defined
in the next section

Use the next or previous buttons to move to the other AA state and type in the
same equation.

Below is a picture of the diagram. The variables do not show in the valid waveform at this zoom level
because they are longer than the valid segments. If you zoom in you can see the variable names.

To see the generated code, export the test bench and view the code in the Report tab that contains
the generated code. To see the code that initializes the inputData array, seach for "inputData". Next,
look at the CLK_pos sequence, and search for "address" to find the assignment statement that drives
the DATA bus with a value from inputData indexed by the address variable (the address variable will
be created in the next step).

SynaptiCAD Tutorials138

Copyright © 2011, SynaptiCAD Sales, Inc.

(TBench) 2.9 Create For-Loop to Perform Multiple Writes and
Reads

Loops and nested loops can be placed in the diagram to make the generated test bench apply the
same test vectors. Here we will add a FOR loop that surrounds the write and read cycle and applys
the waveforms 10 times.

Add the Loop Markers:

Depress the Marker button so that
right-clicks will add Marker lines to the
diagram.

Left-click the positive clock edge at
100ns to select it, then right-click to
place the Marker. This attaches the
marker to the selected edge.

Place another marker at the positive
clock edge at 800ns by first selecting
the edge and then right clicking to add
the marker.

Test Bench Generation 2: Reactive Test Bench Option 139

Copyright © 2011, SynaptiCAD Sales, Inc.

Double-click on the first Marker to
open the Edit Time Marker dialog.

Change the name to AddressLoop,
set the type to For Loop, set Index to
address, and set end to 10. This will
define the variable address that we
used in the previous section.

Notice that the marker is attached to
CLK 100. If you accidentally attached
to the time you can use the controls in
that section to attach to the clock.

Then press OK to close the dialog.

Double-click the second Marker to
open the Edit Time Marker dialog.

Set the Type to Loop End.

Set the Display Label to Type so that
the marker will display its type rather
than its name.

Notice that the marker is attached to
CLK 800. If you accidentally attached
to a time, you can use the controls in
that section to attach to the clock.

Press the OK button to close the
dialog.

The two markers should now be connected graphically as shown below. During simulation the
diagram between the loop markers will be applied ten times to the model under test. Each time a new
value will be read from the file data and written to the model under test because of the @inputData
[address]. Then the write will be verified during the read cycle. In this particular case we have written
all the values to the same memory location but you could have also parameterized these values or
read them in from the data file.

To see the generated code, export the test bench and view the code in the Report tab that contains
the generated code. The for loop in the diagram generates a for loop in the generated code.

SynaptiCAD Tutorials140

Copyright © 2011, SynaptiCAD Sales, Inc.

(TBench) 2.10 Alternate Test Bench Designs

The test bench for this tutorial has been a very simple one-loop read and write cycle. However with
very small changes you can control the order of the reads and writes and also write random data
instead of the data from the file. We will not perform these steps but you can look at the diagrams
and see how it is done.

Alternalte: Consecutive Writes followed by Consecutive Reads

If you want to perform multiple writes concurrently, followed by multiple concurrent reads, then two
for-loops are needed. The array of data can be referenced in each loop in the same manner already
demonstrated. The (2) beside the ReadLoop label shows that it was added after the LoopEnd marker.

Test Bench Generation 2: Reactive Test Bench Option 141

Copyright © 2011, SynaptiCAD Sales, Inc.

Random Data instead of the File data

In Verilog, you could use $random() as the state value for DATA during the write transaction. A user-
defined function can also be embedded into the generated test bench using the Class Methods dialog
which could be used to generate data values. In both of these cases, you would need to modify the
state value under the VerifyDataRead sample since the inputData array is no longer used. A
Sample must be placed on the driven DATA segment to capture the expected data. For example, you
could create a Sample named ExpectedData that is triggered from the clock edge at 300ns. Then
the state under the VerifyDataRead Sample would be set to ExpectedData instead of @inputData
[address].

(TBench) 2.11 Summary of Reactive Test Bench Tutorial

Congratulations, you have completed the Reactive Test Bench Tutorial. You have created a self-
testing test bench that uses a sample to test data coming back from the model under test. You have
drawn both the stimulus vectors to drive the model under test and the expected waveforms that
should come back from the model under test. You have experimented with edge sensitive control and
with samples that block the test bench until a particular state is received. You have also added a loop
that allows waveforms to be applied to the model under test without having to redraw the transactions
over and over again.

SynaptiCAD Tutorials142

Copyright © 2011, SynaptiCAD Sales, Inc.

Test Bench Generation 3: TestBencher Pro Basic Tutorial

In less then 30 minutes you will create a reusable test bench that can apply different stimulus and
verify the results of a clocked SRAM. Below is a schematic of the different components that you will
construct. First you will create the Project file that controls the generation of the interface model (test
bench). Next you will draw the different transaction diagrams that are needed to communicate with
the SRAM. And then you will edit the sequencer process to apply the transactions to the model
under test. Finally you will simulate the design and verify the operation of the SRAM model.

Figure 1: Tutorial Schematic

This tutorial assumes that you are familiar with the SynaptiCAD timing diagram editing environment. If
you would like more information on the drawing environment then work through the short Help >
Tutorial > Basic Drawing and Timing Analysis tutorial.

(TBench) 3.1 Run TestBencher Pro

This tutorial requires a full version license for TestBencher Pro or an evaluation license. If you are
evaluating then you can obtain a license by completing the form under the Help > Request License
menu item and contacting our sales department.

Run TestBencher Pro from the Start Menu.

To verify that you have a license, select the Help > View License Details... from the top-level
menu of TestBencher to see if your license is detected.

10

Test Bench Generation 3: TestBencher Pro Basic Tutorial 143

Copyright © 2011, SynaptiCAD Sales, Inc.

(TBench) 3.2 Create a Project

TestBencher Pro uses a project file to represent and to control the generation of a bus-functional
model (BFM) component. The information in the project file is displayed in the Project window and
context sensitive menus (right-click menus) provide a list of actions that can be performed for the
elements in the project tree. Projects are created using New Project Wizard dialog. This dialog helps
setup the project directory, the generated language, and the clocking signal for the project.

Select the Project > New Project menu option
to launch the New Project Wizard dialog.

Enter sramtest in the Project Name edit box. This will be both the name of the project and the
subdirectory were project files are located. The subdirectory will be placed underneath the
Project Directory path. Unix users need to make sure that you have read/write access to the
directory specified in the Project Directory edit box.

Check the Transaction-based Test Bench Generation checkbox.

Use the Project Language box to select the code generation language. This tutorial can be
use to generate Verilog, VHDL, and TestBuilder code. Sometimes a file name will be written
as filename.<language extension>. This means that the file extension will be different
depending on the language used: Verilog *.v, VHDL *.vhd, and TestBuilder *.cpp.

Use the Simulator box to select your simulator. If you are evaluating, use the Verilog and
VeriLogger Extreme combination, because the simulator is already set to work with
TestBencher Pro. If you do not see your simulator pick one at random, then after the project is
created read through the Chapter 1, Section 7 Setting Up Simulators in the TestBencher Pro
Manual to setup the simulator manually.

Press the Next button to move to the second page of the New Project Wizard.

SynaptiCAD Tutorials144

Copyright © 2011, SynaptiCAD Sales, Inc.

Note that the name of the New Template is sramtest (the name of the project). TestBencher
will use this file to generate the top-level module of the test bench. The Original Template is a
file whose contents are copied into the new template file. Typically this file is tbench.v (a
default file that ships with the software).

Type CLK into the Default Clock box, and choose neg from the Edge box. Selecting a
default clock causes the test bench to be cycle-based; if no clock is specified, the test bench
will be event-based.

Check the Create Default Clock Generator box. This will cause TestBencher to create a
slave timing diagram called Clk_generator.btim that will drive the default clock signal.

Press the Finish button to close the New Project Wizard, create the project, and populate the
Project window.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 145

Copyright © 2011, SynaptiCAD Sales, Inc.

(TBench) 3.3 Add the SRAM model to the Project

Next we will add the model under test (MUT) files to the project. TestBencher can parse the MUT files
and extract the signal and port information for use in the transaction diagrams. Also, TestBencher
uses the MUT information to instantiate the top-level component into the testbench model. For this
tutorial we are going to test a clocked SRAM model.

Right-click the User Source
Files folder in the Project
window and select Copy Files
to User Source File Folder
from the context menu option.
This will open the Add Files...
dialog.

Use the Look in box to browse to the SynaptiCAD > Examples > TutorialFiles >
TestBencherBasicTutorial directory.

Depending on your language
type, select either the Verilog
clksram.v or the VHDL
clksram.vhd file.

Press the Open button to close
the dialog and add the file to
the project.

Double click on the clksram MUT file to open the file in an editor window. Glance through the
code so that you have an of how the model we will be testing works. Close the editor when
you are done.

SynaptiCAD Tutorials146

Copyright © 2011, SynaptiCAD Sales, Inc.

(TBench) 3.4 Setup the Template Diagram

When TestBencher created the project it also generated a template diagram. New transaction
diagrams that are created for this project will contain the same signals, waveforms, parameters, and
properties as the template diagram. Currently the CLK signal is the only signal in the template
diagram. You are going to add the port signals for the clocked SRAM to the template so that later
when you create the timing diagrams for the project all of the signal information matches up.

Extract the ports from the SRAM into the template diagram:

In the Project window, under
the Template Diagram folder,
double click on
sramtest_templateDiagram.
btim to open the template
diagram window.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 147

Copyright © 2011, SynaptiCAD Sales, Inc.

Click the Extract Ports from

MUT button. This will build
the MUT and insert the signals
for the MUT ports into the
template diagram.

The blue icons indicate the
direction of the signals. DBUS
has a direction of inout,
because the data bus will need
to both drive data to the SRAM
model and receive data back
from it. The CLK is an input to
the diagram because it is
driven by the CLK_generator
diagram (the blue waveform
also indicates it is an input).
The rest are outputs of the test
bench which will drive stimulus
to the SRAM model under test.

Notice that <clksram> is now
present in the Project window
under the Models Under Test
folder. The single angle brackets
indicate that clksram is the Model
Under Test. Expanding this tree
will display signal, port, and
component information of the
MUT.

Note: If <clksram> was not generated as the MUT, then change the simulation preferences by
choosing the Options > Diagram Simulation Preferences menu. Check the Auto-create test
bench and tree check box. Press the Extract Ports from MUT button to rebuild the MUT.

Add an end diagram marker:

The transaction diagrams use an End Diagram Marker to indicate the exact time that the transaction
ends. You can add an end diagram marker to the template diagram, so all new transactions will get
the marker.

Press the Marker button
so that right clicks will
add Marker lines to the
diagram.

SynaptiCAD Tutorials148

Copyright © 2011, SynaptiCAD Sales, Inc.

Click on the fourth falling edge of
the CLK signal (at 350ns) to select
it and turn it green. Then right-click
to add the marker line.

Double-click on the marker to open the Edit
Time Marker dialog.

Select a Marker Type of End Diagram from
the drop down list box. This end diagram
marker will force the transaction to end at the
fourth falling edge of the CLK signal.

Notice that the Marker is Attached to Edge on
CLK at 350ns. This is because you selected
the edge before adding the marker. These
controls can be used to changed the
attachment.

Select Type from the Display Label list box.
This will cause the marker to display its type
rather then its name.

Click OK to close the Edit Time Marker dialog.

Use the File > Save All Files menu option to save the project and the template diagram.

The completed template diagram should look like the following:

(TBench) 3.5 Create the Write Cycle Transaction Diagram

TestBencher Pro uses timing diagrams to represent reusable bus transactions. This tutorial will use
two timing diagrams, tbread.btim and tbwrite.btim, to represent the read and write cycles used in
testing the memory module. First, draw the write cycle diagram and then create variables for the data
and address busses so that new values can be passed to the timing diagram each time it is called by
the sequencer. Variables are also used to provide comparison values for runtime testing, and this will
be demonstrated in the read diagram.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 149

Copyright © 2011, SynaptiCAD Sales, Inc.

 Create the Write diagram from the Template:

In the Project window, right
click the Transaction
Diagrams folder and select
Create a new Master
Transactor from the context
menu. This will cause the
Save As dialog to open.

Name the file tbwrite and press the
Save button. This creates a new
timing diagram using the information
in the template file and lists the file
in the Transaction Diagram folder.

Draw the waveforms for the Write diagram:

Sketch the waveforms as shown on the diagram below. Since this is a negative edge clocked diagram
the exact placement of signal edges is not important (unless it is near a negative clock edge). If you
need a help drawing, refer to the Basic Drawing and Timing Analysis Tutorial sections 1.2 Drawing
Signal Waveforms .

Add the variables:

Double click on the valid segment
in the center of ABUS to open the
Edit Bus State dialog.

Type $$addr into the Virtual edit box. The "$$" in front of the variable name indicates that this
is a state variable. If the "$$" is missing, TestBencher Pro will assume that this is the value of
the address rather than a variable that will accept a value at a later time.

15

SynaptiCAD Tutorials150

Copyright © 2011, SynaptiCAD Sales, Inc.

Click on the valid segment in the
center of DBUS to move the focus
of the Edit Bus State dialog to the
new segment.

Type $$data in the Virtual edit box, then press the OK button to close the Edit Bus State
dialog. The two edited segments will display the state variables.

Click the diskette icon on the main toolbar to save the timing diagram.

Below is the completed write transaction. When the chip select (CSB) and the write enable (WRB)
are low, the address and data busses will be driven with the current values of the $$addr and $$data
variables.

(TBench) 3.6 Create the Read Cycle Transaction Diagram

The read cycle will initiate a read transaction with the clocked SRAM and also monitor the data bus
to verify the result of the read. Since the signals for the read diagram are so similar to the write
diagram, we will start by copying the write diagram and then modify the waveforms (instead of starting
with the template).

Copy the tbwrite diagram to make tbread:

Click on the tbwrite diagram window bar so that it is the active window, then choose File >
Save Timing Diagram As menu to open the Save As dialog

Name the file tbread, and press the Save button.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 151

Copyright © 2011, SynaptiCAD Sales, Inc.

Right-click in tbread's
Label window, and select
Add Master Diagram to
Project from the context
menu. This will add tbread
to the Transaction
Diagrams folder in the
Project window.

Modify the WRB Signal:

The write control signal, WRB, should stay high (inactive) for the duration of the read.

Select the center segment
and press the delete key to
remove the low signal
segment.

Modify the DBUS Signal:

Since our SRAM is clocked the data comes out on the clock cycle after the chip select signal, CSB,
goes active. You can drag each edge of DBUS individually, or use the following technique to shift the
whole signal.

Shift the start of the DBUS data segment to 200ns. Hold down the <2> key (the number 2
key) on the keyboard, while dragging the starting transition to 200ns. The <2> key causes
transitions to the right of the selected edge to move with the dragged edge.

During the read transaction, the DBUS signal will be driven by the SRAM so it will be an input signal
to the test bench (not an output like in the write cycle).

SynaptiCAD Tutorials152

Copyright © 2011, SynaptiCAD Sales, Inc.

Double click on the data
segment to open the Edit
Bus State dialog.

Uncheck Driven (Export
to source code)
checkbox.This will cause
the segment to be
displayed in blue.

Click the diskette icon on the main toolbar to save the timing diagram.

The completed read diagram looks like the following:

(TBench) 3.7 Add a Sample to Verify Data

Next a Sample will be added to the read timing diagram. Samples compare the actual state value of
an input signal to the expected state value, and conditionally react to the results of the comparison.

Add the sample:

In the tbread diagram, press the Sample button so
that right clicks will add samples.

First, left-click on
the third falling
edge (250ns) of
CLK to select the
edge.

Then, Right-click
near the end of the
blue valid
segment on DBUS.

This adds a Sample parameter named SAMPLE0 that lines up with the third neg edge of the
CLK signal.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 153

Copyright © 2011, SynaptiCAD Sales, Inc.

Investigate the sample code generation features:

The default behavior of the sample compares the run time value with the drawn value ($$data) and
throws an Error if they are different. This is the behavior that we need for the tutorial. The next few
steps show you the HDL code generation dialog and how to control the generated code. You do not
need to make any changes to the dialog defaults.

Double-click on the
sample name
SAMPLE0 in the
drawing window to
open the Sample
Properties dialog.

Notice that this dialog
controls all of the
display features for
the Sample. The
sample can be offset
from the triggering
edge. Also notice
that the HDL Code
Generation is
enabled.

Press the HDL Code
button to open the
Code Generation
Options dialog.

SynaptiCAD Tutorials154

Copyright © 2011, SynaptiCAD Sales, Inc.

The Sample
generates an code in
the form of if/then/
else.

Look through the
condition and action
drop-downs to see
the built-in behavior
choices.

Make sure to return
the dialog to the
shown state so that
error messages will
be generated if the
Sampled data does
not match the
variable.

Press OK to close the Code Generation Options dialog. Then press OK to close the Sample
Properties dialog.

Save the timing diagram by selecting File > Save Timing Diagram from the main
TestBencher menu.

(TBench) 3.8 Create the Initialize Transaction Diagram

When drawing the waveforms for a transaction diagram it is important to remember that transactions
do not automatically include an event at time zero and that only the drawn events are driven. This is a
feature that allows transactions to be reused any time during simulation without implying any
initialization information. In our example, the clocked SRAM control signals, CSB and WRB, need to
be initialized before the read and write cycles are applied to the model. We will draw a simple
initialization diagram that will drive the control signals to high (inactive).

Test Bench Generation 3: TestBencher Pro Basic Tutorial 155

Copyright © 2011, SynaptiCAD Sales, Inc.

Create the Initialization diagram from the Template diagram:

In the Project window, right
click the Transaction
Diagrams folder and select
Create a new Master
Transactor from the
context menu. This will
cause the Save As dialog
to open.

Name the file
tbinitialize and
press the Save
button. This creates
a new timing
diagram using the
information in the
template file and
lists the file in the
Transaction
Diagrams folder.

Edit the Waveforms:

Remove the ABUS and DBUS signals, because the tri-state bus signals do not need to be
initialized. Select the ABUS and DBUS signals by clicking on them, and then press the
<delete> key to delete the selected signals.

Draw the following waveforms as shown
(tristate for 10ns then high). If you need a
help drawing, refer to the Basic Drawing
and Timing Analysis Tutorial sections 1.5
Drawing Signal Waveforms .

Move the End Diagram Marker:

The initialization timing diagram will only need one clock cycle to initialize the control signals.
Therefore, the End Diagram marker can be moved to the 1st negative clock edge.

15

SynaptiCAD Tutorials156

Copyright © 2011, SynaptiCAD Sales, Inc.

Double-click on the marker to open the
Edit Time Marker dialog.

Select Attach to Edge from the radio
buttons.

Click OK to close the Edit Time Marker
dialog. This will put TestBencher into a
special select mode.

As you move the cursor around in the
diagram a green bar will jump to the
closest edge to remind you that you are in
the Attach to edge mode. Click on the
first negative clock edge (at 50ns) to
attach the marker to that edge.

Click the diskette icon on the main toolbar to save the timing diagram.

(TBench) 3.9 Add Transaction Calls to the Sequencer Process

Inside the primary template file for the project is a Sequencer Process. This process is the place in
the top-level test bench that defines the order in which the timing transactions are applied to the
model under test. By using the Insert Diagram Calls dialog, you can construct the testbench by
writing little to no code.

Open the Component Model for the main Test Bench:

In the Project window,
double click on the
Component Model folder
to open an editor window
with the sramtest
template file.

Find the Transaction Sequencer in the Component Model:

Scroll down in the sramtest editor window near the end of the file until you find the
Transaction Sequencer comment block. The comment changes depending on the code
generation language.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 157

Copyright © 2011, SynaptiCAD Sales, Inc.

Open the Insert Diagram Calls Dialog:

Click in the sramtest editor window below the Transaction Sequencer comment (as shown
above) so that the blinking cursor is in the place where the apply statement should be added.

Right-click in the editor window and select Insert Diagram Calls to open the Insert Diagram
Subroutine Call dialog.

Arrange the windows so you can see the editor and the dialog at the same time.

Insert the Apply calls:

The Insert Diagram Subroutine Calls dialog generates diagram apply calls so you do not need to
memorize the function syntax. Each timing diagram can generate one of three task calls:

Apply runs the transaction in a blocking mode so that no other transactions will run until this
one is done.

Apply-nowait runs the transaction concurrently with other transactions.

Abort stops a running transaction.

The Master/Slave Diagram Setting determines how many times a transaction executes. Master

SynaptiCAD Tutorials158

Copyright © 2011, SynaptiCAD Sales, Inc.

Transactors, like the Read, Write, and Initialize diagrams run once and stop. Slave Transactors like
the Global Clock Generator run in a looping mode until an Abort call is received. You will first start the
clock, initialize the control signals, write to the SRAM, read from the SRAM twice, and then abort the
clock.

Double click on the CLK_generator insert the statement into the Sequencer Process. Since
this is a slave diagram (indicated by the black arrow), the default state is Apply-nowait,
because most of the time slave diagrams will run concurrently with other diagrams.

Double click on the tbinitialize entry. Since this is a master diagram, the default state is
Apply, because usually Master diagram run in blocking mode.

Double click on the tbwrite entry.

Double click on the tbread entry TWO times to insert the code to add two read calls.

Select CLK_generator entry, choose Abort radio button, and then press the Insert button to
insert the code. This will add the abort call to stop the clock generator.

Close the Insert Diagram Subroutine Call dialog.

The apply calls should look similar to the following code block. Different languages may have
extra parameters.

Edit the State Values of the Write and Read Apply calls:

Edit the write and read Apply code lines and replace the state variable names with actual variables
that will be passed into the timing diagrams. The comment lines are there to document the parameter
variable names. Note: The code to be entered is bold.

For Verilog type:

Apply_tbwrite('hF0, 'hAE);

Apply_tbread('hF0, 'hAE);

Apply_tbread('hF0, 'hEE);

For VHDL type:

Apply_tbwrite(tb_Control, tb_InstancePath, x"F0", x"AE");

Apply_tbread(tb_Control, tb_InstancePath, x"F0", x"AE");

Apply_tbread(tb_Control, tb_InstancePath, x"F0", x"EE");

For OpenVera type:

Test Bench Generation 3: TestBencher Pro Basic Tutorial 159

Copyright © 2011, SynaptiCAD Sales, Inc.

tb_tbwrite.ExecuteOnce('hF0, 'hAE);

tb_tbread.ExecuteOnce('hF0, 'hAE);

tb_tbread.ExecuteOnce('hF0, 'hEE);

Notice that the tbwrite apply statement writes the hex value AE to memory cell F0. The tbread
diagram calls will then read the value from the same memory cell. The data values provided in the
tbread diagram calls will be used to compare with the actual value. The first call to tbread will
expect to find a value of hex AE in the address F0. The second call to tbread will expect to find the
hex value EE instead. This will cause the sample to report an error during the second execution of
tbread.

Save the top-level template file by right-clicking in the editor window and selecting Save.

In addition to these task calls, you can also place HDL code in the sequencer. One example where
this would be useful is if you wish to place conditions on whether or not a timing transaction is called,
or on the parameter values that you wish to have applied.

An alternative method to placing transaction calls in the sequencer process is to create a file external
to the bus-functional model with transaction calls and during simulation read the transaction calls
from a file (see Section 7.3: Transaction Manager Overview in the online TestBencher Manual).

(TBench) 3.10 Setup the Simulator

At this point all the timing diagrams have been created and you have edited the Sequencer process.
Next we will generate the test bench and simulate the entire design, but we should first check to see
if the simulator is setup properly.

TestBencher can control external simulators and compilers or use its built-in Verilog simulator to
compile and simulate the design. If you are using the built-in simulator, skip ahead to next section.
Step 7: Setup External Simulators in the TestBencher Pro online manual has a complete list of
instructions for working with remote simulators and for setting up a compiler for TestBuilder.

To configure a third-party simulator:

Choose the Options > Simulator and Compiler Settings menu option. This will open the
Simulator and Compiler Settings dialog.

From the Simulator and Compiler tools drop-down select the appropriate simulator.

Enter the directory that contains the simulator executable in the Simulator Path edit box.

Press Compile Syncad Libraries to build libraries required by the simulator in order to
compile TestBencher projects. IMPORTANT: If you omit this step, you will get compile errors
when you attempt to compile your test bench source files. This has to be done ONCE for each
new simulator.

Click OK to close the Simulator and Compiler Settings dialog.

Select the third-party simulator:

Select the Project > Project Simulation Properties menu option. This will open the Project
Simulation Properties dialog.

Select the tab for the language you are working with.

Select the desired simulator from the Simulator Type drop-down. If you are working in VHDL
and using ModelSim XE/PE (but not SE), you should probably set this value to ModelSIM
VHDL GUI, because XE and PE do not support the API required for TestBencher to capture

SynaptiCAD Tutorials160

Copyright © 2011, SynaptiCAD Sales, Inc.

the waveforms directly inside the GUI (the API is supported by ModelSim SE).

Click OK to close the Project Simulation Properties dialog.

(TBench) 3.11 Generate the Test Bench and Simulate

Once the simulator is setup you are ready to generate the test bench and simulate the design.

To generate the test bench:

Press the Make TB button.
This will expand the macros
in the template file and pop
up a dialog that says "
Finished generating test
bench. Please check
waveperl.log for errors." Close
this dialog by clicking the OK
button.

In the Report window, check the waveperl.log tab to see if TestBencher encountered any
errors during the test bench generation. If it did, fix the error and regenerate the test bench. (If
you can not see the Report window, choose the Window > Report menu to bring it to the
front.)

To simulate the design:

Click the yellow Compile Model and Test Bench button. This builds
(parses) the project using the tools specified in the Project Settings
and Simulator and Compiler Settings dialogs.

In the bottom right corner, a yellow Simulation Built status message indicates the build was
successful and that you are ready to simulate. If the status indicates an error, the Report
window Errors tab displays the compile errors. If there are errors then fix them, regenerate the
test bench, and recompile.

Click the green run button on the simulation button bar. This will
simulate the design and display the results in the StimulusAndResults
diagram and the Report window simulation.log tab.

In the bottom right corner, a Simulation Good status message indicates that the simulation
has reached a successful end.

(TBench) 3.12 Examine Report Window Results

The Report window simulation.log tab displays the default log file for the simulator. TestBencher
automatically writes a message to the log file each time a transaction starts and stops. The clocked
SRAM contains code to display a message each time it performs a read or write. We also added a
sample parameter to the Read Cycle, and set it to generate an error message when the data from the
SRAM does not match the expected value.

Examine the log file:

Test Bench Generation 3: TestBencher Pro Basic Tutorial 161

Copyright © 2011, SynaptiCAD Sales, Inc.

In the Report window, open the simulation.log tab and display the following results:

sim> run

SIM: TB> Note: In "sramtest_CLK_generator" at 0.000ns: Executing LOOPING

SIM: TB> Note: In "sramtest_tbinitialize" at 0.000ns: Executing ONCE

SIM: TB> Note: In "sramtest_tbinitialize" at 50.000ns: Execution DONE

SIM: TB> Note: In "sramtest_tbwrite" at 50.000ns: Executing ONCE

SIM: In clksram at 150.000ns: Writing ae to address f0

SIM: TB> Note: In "sramtest_tbwrite" at 350.000ns: Execution DONE

SIM: TB> Note: In "sramtest_tbread" at 350.000ns: Executing ONCE

SIM: In clksram at 450.000ns: Reading ae to address f0

SIM: TB> Note: In "sramtest_tbread" at 650.000ns: Execution DONE

SIM: TB> Note: In "sramtest_tbread" at 650.000ns: Executing ONCE

SIM: In clksram at 750.000ns: Reading ae to address f0

SIM: TB> Error: In "sramtest_tbread" at 850.000ns: Sample SAMPLE0_process

sampled signal: DBUS

SIM: Expected state: ee ; Detected state: ae

SIM: TB> Note: In "sramtest_tbread" at 950.000ns: Execution DONE

SIM: TB> Note: In "sramtest_CLK_generator" at 950.000ns: Execution DONE

SIM: TB> Total Warnings = 0

SIM: TB> Total Errors = 1

Simulation finished due to event queue exhaustion.

Simulation time: 0.2 s (CPU time: 0.2 s)

sim> start_corba_msg_pump

sim> exit

Process exited with code 0.

Notice that the clock generator starts at time zero and continues until the end of the simulation
when the abort call is issued.

The initialization diagram also starts executing at time zero and blocks the next transaction until
it is complete.

The write diagram starts next and writes a value to the SRAM. The SRAM acknowledges that is
writing the value to the specified address.

The first read diagram executes successfully.

The second read diagram throws a warning because the expected value did not match the value
from the MUT. We purposely passed in a bad expected data value so we could see how the
sample throws the error.

Next the abort call to the clock stops the clock transaction and ends the simulation.

(TBench) 3.13 Examine the Stimulus and Results Diagram

After simulation the Stimulus and Results diagram will contain all of the top level signals of the
project, the driver signals, and status and trigger signals for each transaction.

Hide some of the signals in the Stimulus and Results diagram by selecting the signal names
and choosing View > Hide Selected Signals until the diagram looks like this:

SynaptiCAD Tutorials162

Copyright © 2011, SynaptiCAD Sales, Inc.

A status signal of <1> indicates the transaction is running. You can see that the initialization
diagram runs followed by the write cycle and two read cycles.

During the write cycle, the data AE is written to address F0. When comparing the simulated
write cycle to the drawn transaction, remember that this is a negative clock edge diagram.

The read cycles read back the data from the memory.

(TBench) 3.14 TestBencher Pro Basic Tutorial Summary

Congratulations! You have completed the TestBencher Pro Basic tutorial. In just a few minutes you
created four transaction diagrams, modified the sequencer process, and generated a full bus
functional model. This is a very basic example of how TestBencher Pro can work. More advanced
features include the ability randomly generate values for transactions or read them in from files. You
also extend TestBencher's capabilities by writing functions and calling them within a transaction
diagram. The next step is read through the first page of each of the TestBencher Pro Manual's
chapters to see the types of functions that are available.

Test Bench Generation 4: TestBencher Pro with Random Transactions 163

Copyright © 2011, SynaptiCAD Sales, Inc.

Test Bench Generation 4: TestBencher Pro with Random
Transactions

This tutorial demonstrates how to convert a directed-test VHDL test bench project into a constrained-
random testbench where transactions are randomly applied to the model under test. TestBencher Pro
can generate a Transaction Generator that randomly posts master transaction calls to a Transaction
Manager Queue, based on the probabilities specified in a weightings table. A weightings table defines
the relative probabilities for the next transaction type based on the type of the most recently posted
transaction call. The input data for these randomly selected transactions is automatically randomized
using the constraint settings for each input variable when a transaction call is popped from the queue
and executed. You will need a license to TestBencher Pro and access to a VHDL simulator to
simulate and see the results of this tutorial. These features are not currently supported in Verilog.

(TBench) 4.1 Run TestBencher Pro

This tutorial requires a full version license for TestBencher Pro or a temporary evaluation license. If
you are evaluating then you can obtain a license by completing the form under the Help > Request
License menu item and contacting our sales department.

Run TestBencher Pro from the Start Menu.

SynaptiCAD Tutorials164

Copyright © 2011, SynaptiCAD Sales, Inc.

To verify that you have a license, select the Help > View License Details... from the top-level
menu of TestBencher to see if your license is detected.

(TBench) 4.2 Setup the VHDL Simulator

This tutorial requires that you have access to a VHDL Simulator from another vendor. You will need to
tell TestBencher which simulator you want to use and also recompile the syncad libraries. Each time
you upgrade to a newer version of TestBencher Pro or a new simulator you will need to recompile the
libraries.

Choose the Options >
Simulator and Compiler
Settings menu to open a dialog
of the same name.

In the Tools drop-down, pick the
name of your VHDL simulator.

TestBencher Pro will look through
your normal executable paths to
find the stated simulator. There is
also a Simulator Path box where
you can type in the path if it is not
in your PATH environment variable's
list.

Press the Compile Syncad
Libraries button to compile the
simulation libraries with the
selected simulator.

Press Ok to close the dialog and
apply the changes.

Test Bench Generation 4: TestBencher Pro with Random Transactions 165

Copyright © 2011, SynaptiCAD Sales, Inc.

(TBench) 4.3 Load the RandomizedSweepTest Project

Load the RandomizedSweepTest project and examine its contents.

Choose the Project > Open Project menu to open a
dialog of the same name.

Open the RandomizedSweepTest project located in the SynaptiCAD > Examples >
TestBencher > VHDL > RandomizedSweepTest directory.

This project will test the SRAM
model located in the tbsram.vhd
file. Double click on that file to
see the code for the SRAM.

Notice that there are three
Transaction Diagrams.

The GClock_generator is a
slave diagram that will drive the
clock to the other transactions
and run in a looping mode.

The tbwrite and tbread
transactions are master
transactions that will run once
and stop. They are the write and
read transactions that will be
used to test the SRAM model
under test.

The Component Model contains
the template file where the
transactions will be sequenced.

Open the Template file and find the Sequencer Process:

Open the Template file by double
clicking on the Component Model in
Project window.

SynaptiCAD Tutorials166

Copyright © 2011, SynaptiCAD Sales, Inc.

Find the Sequencer Process in the
file. We used the CTRL-F keys to
open the search box and searched
for sequencer to find the process.

Leave this file open for the next couple
of sections.

(TBench) 4.4 Weight the Transaction Types

TestBencher uses a weighting table to specify the probability that a particular transaction type will be
posted, based on the type of the previous randomly generated transaction type. The default table is
set inside the $InitializeDiagramTaskCall macro at the top of the Sequencer Process. This default
table gives uniform weighting to all master transactions so that each has the same probability that it
will execute after any other master transactor. The default table sets the probability of the initialization
state to zero (the initialization state is not a transactor type, it just represents the initial state of the
BFM before any transactor has been randomly generated, so the first column should always contain
zeros).

Change the Weighting Function:

Copy the entire SetTransactorWeightings line from inside the above macro, and Paste it below
the macro. You can then edit this line to have your table values overwrite the default table
during simulation.

The tb_ok variable is an automatically generated variable that you can use to capture the
return value of TestBencher function calls that return a Boolean value.

The ProjectNameUniformWeighting term needs to be replaced with a state matrix, where
the rows represent the last randomly generated master transactor type and the columns define
the weighting for the next transactor type. The first row/column is reserved for the reset or
starting state of the BFM. The order of the master transactions is the same as they appear in
the Transaction Diagrams folder in the Project window.

Test Bench Generation 4: TestBencher Pro with Random Transactions 167

Copyright © 2011, SynaptiCAD Sales, Inc.

The table can be typed in or copied
from the package file that defines
the default weightings table. To copy
the table, double click on the tb_
ProjectName_Parameters file
located in the Associated Files
folder of the Component Model to
view the code.

Search for UniformWeighting in
the package file and copy/paste the
table as an argument to a
SetTransactorWeighings call in
the sequencer.

A zero in the weightings table indicates that a specific transaction will never follow another.
The higher the number, the more likely a transaction will follow. The table will accept values
from 0 to max integer. Here we made it just as likely that a read will follow a write or vise-a-
versa by using 1 in all the spaces that do not involve the initialization state. Filling the last
column with 2's would make it twice as likely to generate tbreads than tbwrites.

(TBench) 4.5 Post Random Transaction Types

Calls to PostRandomTransactionType will randomly generate one of the master transaction types
of the specified BFM and add this transaction to the BFM's transaction manager queue. In converting
a directed-test test bench project into a constrained-random testbench (where transactions are
randomly applied to the model under test), you will remove most of the apply calls to master
transactors and replace them with PostRandomTransactionType calls. The apply calls to slave
transactors will probably remain the same.

SynaptiCAD Tutorials168

Copyright © 2011, SynaptiCAD Sales, Inc.

Scroll down to view the code below the sequencer comment.

Notice that the we started and stopped the clock using regular Apply calls. Since the Clock is
a slave transaction it is not eligible to be randomized by the Test Generator.

The PostRandomTransactionType call puts one randomly chosen transaction into the
Transaction Manager's Queue.

There is a loop around the PostRandomTransactionType call so it will execute and put 5
transactions in the queue.

There is also a wait call that will force the simulation to continue to run until the queue is
empty (both the read and the write transaction take 300ns to complete, so 5 of these
transactions will complete in 1500ns).

(TBench) 4.6 Constrain the Random Data

Each time a posted random transaction is executed, the input arguments for the transaction will be
randomly generated, taking into account any constraint definitions for the transactor's input variables.

Data into a transaction can also be randomized inside a normal post or apply call by checking the
Randomize Input Parameters box in the Insert Diagram Subroutine Call dialog. It is not necessary
to do this when using a PostRandomTransactionType call, because the data is automatically
randomized into the random transactions. Using either method you will want to constrain the variables
using the steps below.

Look at the Diagram Variables:

Double click on the tbread transactor in the
project window to open the diagram.

Test Bench Generation 4: TestBencher Pro with Random Transactions 169

Copyright © 2011, SynaptiCAD Sales, Inc.

Notice the $$addr and $$data variables on the address and data busses. The $$ means that
they are input variables to the diagram. They will be of the same type as the signal they are
on. In this case, the variables are on an 8-bit bus of type 4_state, so the variables will have a
min/max range of 0-255 and a type of 4_state.

Double click on delay0 to open the Delay Properties dialog.

Notice that Is Apply Subroutine Input is checked, making the delay value an input to the
transactor. Each time this diagram is randomly called, a new delay value will be passed to the
transactor.

Constrain the Variables:

Double click on the Class Library
List under the Component Model
branch of the project to open the
Classes for Library dialog.

Select a particular diagram in the Class Definitions tab and then press the Constraints
button to view and edit the constraints. Each transactor diagram has its own set of input
variables.

SynaptiCAD Tutorials170

Copyright © 2011, SynaptiCAD Sales, Inc.

Variables default to
the entire legal range
for their data types.

For addr and data,
the entire range of an
8-bit value makes
sense for our model.

The delay0_min is of type real, so many of the legal real values are larger than the possible
running times of a transaction, so we constrained the range to 10-50 ns.

Close all the dialogs when you are done looking at the values.

(TBench) 4.7 Simulate and View the Results

Here we will turn on some status signals to make it easier to tell when a particular read or write
transaction is running in the StimulusAndResults diagram. Then we will compile and simulate and
look at the results.

Set the Status Signals to Watch:

Open the Simulated Models folder and
drill down as shown to find the tb_status
signal of the tbwrite_0 transactor.

Right click on the status signal and
choose Watch Connection from the right
click context menu to send this signal to
the Stimulus and Results Diagram.

Do the same steps for the tb_status
signal of the tbread_0 transactor.

When you are done, the tb_status signals will be displayed in the diagram window. After
simulation, you will be able to see the state of the status signals go to TB_ONCE when the
associated transactor is active.

Test Bench Generation 4: TestBencher Pro with Random Transactions 171

Copyright © 2011, SynaptiCAD Sales, Inc.

To generate the test bench:

Press the Make TB button.
This will expand the macros in
the template file and pop up a
dialog that says "Finished
generating test bench. Please
check waveperl.log for errors."
Close this dialog by clicking
the OK button.

In the Report window, check the waveperl.log tab to see if TestBencher encountered any
errors during test bench generation. If it did, fix the error and regenerate the test bench. (If you
cannot see the Report window, choose the Window > Report menu to bring it to the front.)

To simulate the design:

Click the yellow Compile Model and Test Bench button. This builds
(parses) the project using the tools specified in the Project Settings and
Simulator and Compiler Settings dialogs.

In the bottom right corner, a yellow
Simulation Built status message
indicates the build was successful and
that you are ready to simulate. If the
status indicates an error, the Errors tab in
the Report window will display the compile
errors. If there are errors, fix them,
regenerate the test bench, and recompile.

Click the green Run button on the simulation button bar. This will simulate
the design and display the results in the StimulusAndResults diagram and
the Report window simulation.log tab.

In the bottom right corner, a Simulation Good status message indicates that the simulation
has reached a successful end.

View the Results in the StimulusAndResults Window:

SynaptiCAD Tutorials172

Copyright © 2011, SynaptiCAD Sales, Inc.

View the Results in the Simulation Log Window:

(TBench) 4.8 Set the Random Seed

Although the transaction types and transaction input values are randomly generated, you will see the
same results each time you simulate, because the seeds for the random number generator are not
changed between simulation runs. This is normally desirable, since you want your test bench to
generate the same results each time you run it. If you want to change the sequence of randomly
generated values, you must change the seed values in the test bench.

Just below the begin statement in the sequencer process is an automatic macro,
$InitializeDiagramTaskCall, which initializes the transactors of this BFM and also sets the random
seed for the BFM's random number generator (this generator is used to randomize the posted
transactions and the input data for these randomized transactions). Since this code is automatically
generated, you cannot directly edit the seed statement in the macro. However, if you make another
call to the InitializeUniform function below the macro, your new seed values will overwrite the auto-
generated seed values.

Test Bench Generation 4: TestBencher Pro with Random Transactions 173

Copyright © 2011, SynaptiCAD Sales, Inc.

To set a different seed, copy the line of code from the macro that calls the InitializeUniform
function and paste it below the macro end statement. Then edit the seed values passed to this
new function call.

The InitializeUniform function is defined in a package file called tbrandom.vhd in the
syncad_vhdl_library.

(TBench) 4.9 Randomize Transactions Summary

Congratulations, you have completed the Random Transactions tutorial. To convert a regular VHDL
project into one that applies random transactions, the following changes were required:

In the sequencer process, you can make another call to the SetTransactorWeightings
function call to redefine the random weightings table that specifies the probability that a
particular master transaction will be applied after another type of transaction. By default, the
transactions will all have the same probability of being generated.

Probably keep all the slave transaction apply calls the same, because clock processes and
slave transactors have to start and stop at particular times in the test bench operation
(generally at the beginning and end of the test bench).

Replace some or all of the master transactor apply calls in the sequencer with
PostRandomTransactionType calls to randomly post transactions to the BFM's queue.

Add a wait statement to the code or somehow make sure that the simulator will keep running
while there are transactions in the queue waiting to be started.

Constrain the input data going into the transactors by double clicking on the Class Library
List folder in the Project tree under the Component Model section. Select a transactor
diagram, then press the Constraints button to view and edit the constraints for that
transactor's input variables.

The InitializeUniform function can be called again to replace the default seeds for the
random number generator.

SynaptiCAD Tutorials174

Copyright © 2011, SynaptiCAD Sales, Inc.

Simulation 1: VeriLogger Basic Verilog Simulation

This tutorial demonstrates the basic simulation features of the VeriLogger simulators (simx and
vlogcmd) and the graphical debugger (BugHunter Pro). It teaches you how to create and manage a
project and how to build, simulate, and debug your design. It also demonstrates the graphical test
bench generation features that are unique to BugHunter Pro.

This is a stand alone tutorial which you should be able to complete without reading any of the other
tutorials. However, if you plan to make extensive use of the graphical stimulus generation features
then you may also want to perform the Basic Drawing and Timing Analysis tutorial which covers
more of the drawing features of the timing diagram editor.

(Sim) 1.1 Simulator Choices

SynpatiCAD offers two different Verilog simulators: VeriLogger Extreme (simx) and VeriLogger Pro
(vlogcmd). VeriLogger Extreme is a high-performance compiled-code Verilog 2001 simulator that
offers fast simulation of both RTL and gate-level simulations with SDF timing information. VeriLogger
Pro is an interpreted Verilog-95 compliant simulator with a low memory footprint, but it does not
support strengths.

VeriLogger Extreme is the faster simulator for large designs and simulating in debug run mode (the
standard mode for simulators). However, since VeriLogger Pro is interpreted and does not need to
compile the code, it is faster for smaller designs and for auto run mode where the user is graphically
changing the test bench and kicking off automatic simulations.

When you purchase a simulator, you get SynaptiCAD's graphical debugger, BugHunter Pro, in
addition to the command line version of the simulator. Instructions for running the command line

10

Simulation 1: VeriLogger Basic Verilog Simulation 175

Copyright © 2011, SynaptiCAD Sales, Inc.

versions are found in the BugHunter and VeriLogger Manual Chapter 5: Command Line Simulators
. For this tutorial, run BugHunter so that you can experiment with the graphical debugging interface.

From the Start Menu, choose one of the VeriLogger simulators running under BugHunter.

An alternative way to launch the simulators is using the command line:

VeriLogger Extreme: syncad -p bhp -s verilogger_extreme

 VeriLogger Pro: syncad -p bhp -s vlogcmd

The -p bhp option says to run the BugHunter Pro product. The -s option sets the default
simulator used for new BugHunter projects. Note that the simulator used by a project can
be changed at any time from inside BugHunter by selecting the Project > Project
Simulation Properties menu option and changing the the Simulator Type under the
Verilog tab in the dialog that appears.

(Sim) 1.2 Add Files to the Project

BugHunter uses a project file to list the files to be simulated and store the simulation options. Here
you will create the project file and investigate the source code that is used in the tutorial.

Create a new Project:

Select the Project > New Project menu to open the New Project Wizard dialog.

In the Project Name box, name the project simulation_tutorial. Notice that the wizard is
also creating a directory of the same name as you type in the project name.

Notice that you can select the simulator used by the project by changing the selection in the
Simulator drop down box at the bottom of this dialog.

Press the Finish button to create the project.

SynaptiCAD Tutorials176

Copyright © 2011, SynaptiCAD Sales, Inc.

Add the Source Files to the Project:

If you were starting a design from scratch, you could use the Editor > Open HDL File to open an
editor window and type in the code, and then add the new file to the project. In this tutorial, we will
just copy existing source files from the examples directory.

Right click on the User
Source Files folder and
select Copy HDL files to
Source File Folder from
the context menu to open
a file dialog.

In the file dialog, browse to the
SynaptiCAD\Examples\TutorialFiles\VeriloggerBasicVerilogSimulation directory and
select the add4.v and add4test.v files. To select multiple files, hold down the <CTRL> key
while selecting files with the left mouse button. Then close the file dialog.

When the files are first
added to the project they
will be marked with a
purple x to show that the
files are not compiled.

Investigate the code for the Tutorial:

In the project window, double
click on add4.v to launch an
editor window with the source
code loaded.

Simulation 1: VeriLogger Basic Verilog Simulation 177

Copyright © 2011, SynaptiCAD Sales, Inc.

Look through the code and compare it to the following schematics. We will be simulating a 4-
bit adder circuit which adds the x and y inputs together and outputs the answer on the sum
and c_out lines.

(Sim) 1.3 Build the Tree and Investigate the Project

In this section we will build the project tree and use the tree to view the internal modules. Before we
begin, take a look at the Simulation Button Bar and familiarize yourself with the buttons. This button
bar will control most aspects of the simulation. Slowly pass the mouse over the buttons and read the
tool tips.

Three ways to build a project:

Compile the project by pressing the yellow Build button on the
simulation bar, selecting the Simulate > Build menu, or pressing the
<F7> key.

When the build is successful, a yellow Simulation Built message will display in the lower
right hand corner of the program.

The Report window Simulation Log tab shows the build results, and the Error tab would
display a hyper-linked list of errors if there were any.

SynaptiCAD Tutorials178

Copyright © 2011, SynaptiCAD Sales, Inc.

Setting Top-level instances after the first Build:

By default, BugHunter identified
testbed as the only top-level
instance, because all other
modules are instantiated under
it. For this tutorial, this is the
desired top level instance.

After the first build, you can
optionally right click on other
modules and choose Set as a
Top Level instance to force
instantiation as top level
instances.

Notice that the User Source files
have green check marks to
indicated that they are built.

Double clicking on any
component will open a editor
scrolled to that place in the
code.

Set Watch Signals after the first build:

Simulation 1: VeriLogger Basic Verilog Simulation 179

Copyright © 2011, SynaptiCAD Sales, Inc.

BugHunter by default
sets watches on all the
signals and variables of
the top-level module.
This means that the
signal names are
displayed in the
Stimulus and Results
diagram and the
waveforms will be
displayed during
simulation. Event
history is only
maintained for these
signals.

The purple waveform
icon means the signals
are internal to the
model and are not
ports.

Open the project tree until you find
component A1 and signal C1, then
right click and choose the watch
menu option. This causes C1 to be
added to the Stimulus and Results
diagram.

You can also set watches on entire
components, blocks or variables
using the same technique.

Remove any extra watch signals that you
added in the last step. First left click on
the signal name in the diagram window to
select it, then press the <delete> key.

SynaptiCAD Tutorials180

Copyright © 2011, SynaptiCAD Sales, Inc.

(Sim) 1.4 Simulate the Project

The green buttons on the Simulation button bar cause the simulator to run. The smaller buttons are
for single stepping through the code. The one with the hourglass will simulate for a specified period of
time.

Simulate the project:

Press the large green run button to simulate until the end of the
simulation or until a breakpoint is encountered.

Notice that the Stimulus and Results diagram has displayed the simulation results. Verify
that sum and c_out are correctly being computed as x + y + c_in.

If there were errors in the code, they would be indicated by the status bar in the lower right
hand corner, and listed in the Report window's Error tab.

For the rest of this section, just play around with the zooming, scrolling and searching capabilities of
the waveform window.

Zoom using buttons or the mouse:

To zoom in and out quickly, hold
down the <Shift> key while using
the scroll wheel on your mouse.

<Shift> and mouse scroll wheel

To zoom in over a visible section,
drag and drop inside the Time
Line.

The zoom buttons are located on
button bar in the diagram window or
in the View menu.

The zoom in (+) and zoom out (-)
center the zoom on the selected
item, the blue delta mark, or the
center of the diagram in that order.

The zoom full (F) displays the entire timing diagram on the screen.

The zoom range (R) opens a dialog that lets you specify the starting and ending times for the
zoom.

Simulation 1: VeriLogger Basic Verilog Simulation 181

Copyright © 2011, SynaptiCAD Sales, Inc.

Scroll to a specific or relative time using the Time or Delta buttons:

Press on either the Time or the Delta button to open
an edit box, and type in a time. The Time button (black)
causes the diagram window to scroll to that exact time.
The Delta button (blue) causes the diagram window to
scroll that amount from its current position.

Search for a specific signal name, parameter name or string:

Select one of the child windows
in the program, then type into
the Search box on the main
window bar.

If the Diagram window is selected, then it will search for either signal names or waveform state
variables depending on the object that is selected within the diagram.

If the Parameter window is selected, then it will search for parameter names.

If the Report window is selected, then it will search for text in the selected report tab.

(Sim) 1.5 Prepare for Graphical Test Bench Generation

So far in the tutorial, we have created a project and simulated some code using a manually written
testbench, which is the traditional design flow using a simulator. In the next few sections, you will be
drawing a testbench using SynaptiCAD's graphical testbench generator. Before we start, we must
prepare the project by removing the manually written testbench file and clearing out the Stimulus and
Results diagram. Then extract the MUT ports into the Stimulus and Results diagram.

Remove the Test Bench Source Code file and empty the Stimulus and Results Diagram:

Select the file add4test.v
file in the project window
and press the <delete>
key.

Delete all of the signals in
the Stimulus and
Results diagram by
selecting the signal
names and pressing the
<delete> key.

Verify that only add4.v is
listed on the project tree,
and that the diagram is
empty.

SynaptiCAD Tutorials182

Copyright © 2011, SynaptiCAD Sales, Inc.

Verify that BugHunter is in the proper mode to generate a test bench:

Verify that the Simulate > Simulate
Diagram With Project menu option
is checked. This option lets the
simulator compile both the drawn
waveforms and the Verilog source
code files together. If this is
unchecked, then no testbench will be
created.

Extract Ports from the Model Under Test (MUT):

In the previous section, the Stimulus and Results diagram displayed only signals output by the
simulator (the results). This diagram can also hold a testbench that will exercise the model under test
(the stimulus). First we will extract the ports from the model under test and later we will draw the test
bench.

Press the Extract the MUT ports into Diagram
 on the simulator button bar.

Notice that the Stimulus and
Results diagram is populated with the
ports of the FourBitAdder module
(see project tree below). These will be
the signals that you will draw on in
the next section.

The blue icons pointing to the right
are inputs to the test bench (outputs
of the model under test). The icons
pointing to the left are outputs of the
test bench (stimulus that drives the
model under test). The tool-tip will
always show you the direction if you
forget.

The Extract the MUT
function makes a guess as
to which model is the model
under test and displays that
model with single brackets,
<>, underneath the
Simulated Model folder. It
guessed correctly for this
tutorial.

If you wanted to pick a different model under test, right click on a different model under the
User Source Files list and pick Set as Model Under Test (don't do this for this tutorial).

Simulation 1: VeriLogger Basic Verilog Simulation 183

Copyright © 2011, SynaptiCAD Sales, Inc.

(Sim) 1.6 Draw Test Bench in Debug Run Mode

Draw the test bench on the input ports of the of the MUT. You can draw anything and see the results,
however the result images shown in this tutorial will be using the timing diagram shown below.

Draw the Test Bench

Make sure the simulation mode is
set to Debug Run, rather than Auto
Run, so that the simulator does not
re-simulate while you are drawing.

Draw the following waveforms on the input ports of the MUT (see below for drawing
instructions if you need them). Notice that the waveforms are black to indicate that will drive
the MUT. If you have never used SynaptiCAD's drawing environment, then read the rest of the
instructions in this section and practice drawing random signals before drawing the following
diagram:

Notice also that if you draw on the output ports (sum or c_out) the waveforms would be blue
to indicated that they are expected outputs from the MUT. This expected output is used by
the Reactive Test Bench Option to create self-checking test benches, which is covered in the
Reactive Test Bench Option Tutorial . For this tutorial, you can delete the sum and c_out
signals because we will not use them in this tutorial.

Basic Drawing Instructions (Skip to Section 1.7 if you can draw the timing diagram)

The timing diagram editor is always in drawing mode, so left clicking on a signal will draw a waveform.
The red state button controls the type of waveform that is drawn (high, low, tri-state, valid, invalid,
weak high, and weak low). The buttons toggle back and forth between two states, and the next state
is indicated by the little red T on top. Click on the state buttons to set the toggle and next state.

 To draw the waveform of a signal:

Place the mouse cursor inside the Diagram window at the same vertical row as the signal name.
The red state button on the button bar determines the type of waveform drawn. The cursor shape
also mirrors the red state button

122

SynaptiCAD Tutorials184

Copyright © 2011, SynaptiCAD Sales, Inc.

Click the left
mouse
button. This
draws a
waveform
from the end
of the signal
to the mouse
cursor.

Move the
mouse to the
right and
click again
to draw
another
segment.

Keep
drawing from
left to right
across the
diagram.

Pressing the middle mouse button either toggles the state buttons or cycles through them
depending on the setting in the Design Preferences dialog. Choose Options > Design
Preferences menu to open the dialog.

There are several mouse-based editing techniques used to modify existing waveforms. These
techniques will only work on signals that are drawn. They will not work on generated signals like
clocks and simulated (purple) signals.

1) Drag-and-Drop a Signal Transitions:

To move one transition, click on
the transition and drag it to the
desired location.

To move all of the transitions on
one signal, hold down the <1>
and <2> number keys while
dragging. Holding down just the
<1> key moves all the edges to
the left, and the <2> key moves

Simulation 1: VeriLogger Basic Verilog Simulation 185

Copyright © 2011, SynaptiCAD Sales, Inc.

all the right.

To move transitions on different
signals, first select the
transitions by holding the
<CTRL> while clicking on
them. Then drag the transition
to desired location.

2) Click-and-Drag to insert a segment into a waveform:

Inside of a segment, click
and drag the cursor to insert
a segment

The inserted state is
determined by the red state
button

3) Change a segment's graphical state by selecting it and then pressing a state button:

Click in the middle of the segment to select it
(so that it has a green box around it).

Click on a state button to apply that graphical
state to the segment. If you change a
segment to same level as an adjacent
section, the transition will turn red to preserve
the edge data. This transition can be deleted
if necessary.

4) Adding virtual state Information to a segment

For Signals, double-click on the middle of
a segment to open the Edit Bus State
dialog, and then type in a new value into
the Virtual edit box.

For Clocks, press the Hex button and then double-click on the middle of the segment to open
the Edit Bust State dialog. If the Hex button is not pressed, the double-click will open a different
dialog to allow editing of the clock.

(Sim) 1.7 Simulate in Auto Run Mode

In this section, you will build and simulate the MUT with the graphical testbench. Then you will
experiment with the Debug Run and Auto Run simulation modes.

Build and Simulate the Project:

Press the yellow Build button on the simulation bar.

Notice that after the build is complete, a new
model called syncad_top was added to the

SynaptiCAD Tutorials186

Copyright © 2011, SynaptiCAD Sales, Inc.

Simulated Models tree. This is the top-level
instance for the project and it hooks up the
graphical test bench signals to the model under
test (FourBitAdder). Double clicking on
syncad_top will let you view the generated test
bench code.

Also notice that all of the signals and variables
of syncad_top have been added to the Stimulus
and Results diagram (like in section 1.3).

For this tutorial we are concerned with the
outputs of the MUT, so you can ignore all of the
signals except the sum and c_out signals.

The driver and status signals are used by our
TestBencher Pro product to control the
execution of multi-diagram testbenches. These
are not used in the tutorial.

Press the large green Run button to simulate the entire test bench.

Verify that Sum and c_out equals x + y + c_in. The schematic is shown in section 1.2 . In
the diagram below we dragged and dropped the sum and c_out signals to the top of the
simulated signals to make a smaller picture.

Debug Run versus Auto Run Simulation Modes:

Currently the simulator should be in
Debug Run mode, so that
simulations are only compiled when
the Build button is pushed.

Drag and drop an edge on c_in and notice that the simulated waveforms do
not change. To update the waveforms, press the Build button, followed by
the Run button to update the simulation output.

 and

Press the Debug Run mode button to toggle the mode to Auto Run.

175

Simulation 1: VeriLogger Basic Verilog Simulation 187

Copyright © 2011, SynaptiCAD Sales, Inc.

Drag and drop the same edge on c_in and now notice that the simulated waveforms change
each time an input is changed. In Auto Run mode, simulations are performed each time a
waveform is moved (the Build and Run actions are automatically performed). However, if the
simulator is paused in the middle of a simulation when the waveform is changed, then you
must manually restart the simulation to apply the change. This keeps minor mouse clicks
from prematurely exiting a debug session.

Experiment with dragging edges and changing the values of the virtual states. If this was a low-
level module that you just designed, then you could quickly check the functionality of the
module without having to design a formal test bench. If you are running VeriLogger Extreme,
you need to wait between changes for the simulator to compile and finish the previous
simulation.

(Sim) 1.8 Breakpoints, Stepping and Inspecting

In this section we will place a breakpoint in the generated code and take a brief look at the debugging
environment.

Insert a code breakpoint and simulate

Double click on the
syncad_top module in the
project tree to open an editor
that displays the generated
code.

Scroll down to the task
Unclocked module, to see the
stimulus code that was generated
from the drawn waveforms.

Place a breakpoint on the first
change of the y_driver signal by
left clicking on the grey bar on the
side of the editor window. This will
place a red dot in the margin.

Also note that the Report window breakpoints tab lists the source line break point.
BugHunter also supports time and condition breakpoints that are covered in Chapter 3
Debugging of the BugHunter and VeriLogger manual. These other kinds of breakpoints
can be added by right clicking on the breakpoint tab window and choosing Add
Breakpoint from the context menu, but the easiest way to add a condition breakpoint on
a signal is to right click on it in the project tree and select the Add/Toggle Condition
Break Point... menu option. This will cause the simulation to stop whenever the signal
changes value.

SynaptiCAD Tutorials188

Copyright © 2011, SynaptiCAD Sales, Inc.

Press the large green Run button to simulate to the breakpoint.This particular
code line will execute twice at time 50 because it is a non-blocking statement.
The expression values of Non-blocking statements are evaluated when the
statements are first encountered, but they only update their assigned signal at the
end of the simulation cycle (as opposed to blocking statements which evaluate
and immediately update the assigned signal).

Add a breakpoint to the first exclusive
or in the add4.v file, then restart the
simulation.

Press the run button a few times and
watch the green status bar at the
bottom. The fulladder model is
instantiated 4 times inside the
FourBitAdder module, so you are
going to hit this breakpoint a lot. The
status bar shows which instance is
executing. Here, the fa1 instance of
fulladder, which is instantiated in
module FourBitAdder is about to
execute.

Single step through the code

Next press one of the single step buttons a couple of times to watch the
execution of the code. Notice that step with trace (the middle button)
leaves a trail of statements in the simulation log tab of the Report
window. Make sure to check the status bar and compare the execution
to the schematic in section 1.2 .

Use the Inspect Values

Put the cursor over a variable
that has been initialized to see
its current value.

Variables that are watched in the Stimulus and Results diagram can be inspected for values

175

Simulation 1: VeriLogger Basic Verilog Simulation 189

Copyright © 2011, SynaptiCAD Sales, Inc.

at previous times. See the instructions in the BugHunter and VeriLogger manual for using
the Simulate > Inspect Variables menu function (to fill the window, drag signal names from
the Stimulus and Results diagram or type them in manually).

(Sim) 1.9 Archiving Stimulus and Results

So far we have only used a single Stimulus and Results diagram, however multiple diagrams can be
switched in and out to test different aspects of the design, or archived off to be used as comparison
diagrams for later simulations.

Archive off the simulation results:

Run the simulator to the
end of the simulation so
that the Stimulus and
Results diagram and
simulation log file are full
of data.

Right click on the
Stimulus and Results
node and choose
Save Current
Simulation Result in
an Archive from the
context menu, to
open a dialog.

Name the archive test1 and close the
dialog. This will create a subdirectory
called test1 under the project
directory.

Notice that a new node called
Simulation Results Archive has
been added to the tree. Both the
Stimulus and Results diagram and the
simulation log file have been copied to
the new archive directory.

Create a new test and archive that off:

Modify the stimulus and then
simulate to see the changed
waveforms. If you are in Debug
Run mode you will have to
press the Build then the Run
button to restart the

SynaptiCAD Tutorials190

Copyright © 2011, SynaptiCAD Sales, Inc.

simulation.

Archive these results to an archive named test2 using
the method described above.

Switch back to the original test:

Right click and choose
Restore Archive as Current
Simulation Result from the
context menu to restore the
results

Notice that the Stimulus
and Results diagram has
been replaced with the
original test1 data

The archive files remain untouched by the restore command. The data is copied from the
archive into the working directory and you need to re-archive if you want to save the new data.

If you purchase the Compare Option, then you can use the archive diagrams to compare
against new simulations of your design.

Multiple Stimulus and Results diagrams:

In the previous example, both archives used the default Stimulus and Results diagram name so it
can get a little confusing. However, the diagram can be named any name.

Save the Stimulus and Results diagram to a new name using the File > Save Current
Diagram menu option.

Right click on the Stimulus
and Results node and
choose Replace Current
Result Diagram from the
context menu, then choose
the file that you saved.

(Sim) 1.10 Saving the Project files

Whenever you build a project, the project file and any modified source files are automatically saved.
You can also manually save files at any time. This section describes how the different file types can
be saved manually.

Save the HPJ project file:

Choose the Project > Save Project menu option to save the *.hpj file. The project saves the
simulation options and the names of the files contained on the project tree. It does not save
the source code or the watched signals.

Simulation 1: VeriLogger Basic Verilog Simulation 191

Copyright © 2011, SynaptiCAD Sales, Inc.

Save the Source code:

Each time you simulate, every open editor is queried to determine if the source code needs to be
saved before the simulation starts. You can also force a save by doing the following:

Select the Editor > Save HDL File menu option to save the source code in the editor with the
focus.

Select the Editor > Save All menu option to save the source code in all opened editors.

Saving the Stimulus and Results diagram:

The watch signals and simulation results are saved in the current stimulus and results file.

Click on the Stimulus and Results diagram window, then select the File > Save Timing
Diagram menu option to save the diagram. Note: the evaluation version does not allow
diagrams to be saved (you will need to buy a full license or get a temporary evaluation license
to perform this function).

(Sim) 1.11 Summary of VeriLogger Basic Verilog Simulation

Congratulations, you have completed the VeriLogger Basic Verilog Simulation tutorial. We have
demonstrated how to create a project, copy files into the project, simulate and view the results.
Chapter 1 of the BugHunter Pro and VeriLogger manual has a step-by-step design flow of how to set
up a simulator and create a project. You may wish to read that before attempting a to create a
complicated project.

We have also introduced the graphical testbench generation that comes standard with BugHunter
Pro. This feature generates a test bench code from a single timing diagram. There are two other levels
test bench generation that can be added to BugHunter. The first is the Reactive Test Bench Option
that generates self-checking code from the expected waveform information. The highest level is
TestBencher Pro which creates bus functional models from multiple timing diagrams and is able to
apply randomized data to each transaction.

SynaptiCAD Tutorials192

Copyright © 2011, SynaptiCAD Sales, Inc.

Simulation 2: Using WaveFormer with ModelSim VHDL

WaveFormer Pro can be used to create a VHDL stimulus file for a VHDL model that needs to be
tested. Then the test bench and the model under test can be simulated using an external VHDL
simulator. In this tutorial we show the commands to use ModelSim, but if you are using a different
simulator this should give you the basic idea for controlling the simulation. Then we will use
WaveFormer Pro to compare the simulation results against expected results drawn by the user.

To perform this tutorial, you will need a license for WaveFormer Pro with the Comparison feature and
a license for some version of ModelSim VHDL (XE, PE or SE).

(Sim) 2.1 Compile SynaptiCAD Library Models

First time only step: When you first begin using WaveFormer Pro, you will need to compile
SynaptiCAD’s testbench library models with ModelSim.

Start WaveFormer and select the Options > Simulator/Compiler Settings menu option to
open the Simulator and Compiler Settings dialog.

Simulation 2: Using WaveFormer with ModelSim VHDL 193

Copyright © 2011, SynaptiCAD Sales, Inc.

From the Tool drop-down box, select the your particular ModelSim VHDL compiler. If you are
not sure which version of ModelSim that you have, select ModelSim VHDL Command-Line
XE/PE.

Press the Compile Syncad Libraries button to compile the SynaptiCAD Libraries. The first
time that you set up a particular simulator or compiler you should press this button.

You can view the results of this simulation by looking in the simulation.log tab of the Report
window. If you cannot see the Report window, then choose the Window > Report menu
option to bring the window to the front.

SynaptiCAD Tutorials194

Copyright © 2011, SynaptiCAD Sales, Inc.

(Sim) 2.2 Create a project and extract the ports

Create a project in WaveFormer Pro to hold the model under test. This will give WaveFormer access
to the port information of the model.

In WaveFormer Pro create a new Project:

Select the Project > New Project
menu to open the New Project
Wizard dialog.

Name the project add4. This will
be both the name of the project
and the directory name where the
project is stored.

Set the Project Language drop-
down to VHDL 93. This tells
WaveFormer’s parser what
language the MUT (Model Under
Test) is written in.

Close the dialog to create the
project.

Copy the Model Under Test File into the project:

Next we will copy the file containing the VHDL model under test to the project directory and add the
source file to the project file.

Simulation 2: Using WaveFormer with ModelSim VHDL 195

Copyright © 2011, SynaptiCAD Sales, Inc.

Right click on the surface of
the Project window and
choose Copy New Source
Files from the context menu.
This will open a file dialog.

In the above picture, the copy command copies the files to the project directory. The add
command will leave the file in place and just point to the file. For this tutorial we will copy the
files.

In the file dialog, browse to the directory C:
\SynaptiCAD\Examples\ and select the
add4.vhd file. Then press ok to close the
dialog. The file should appear in the Project
window.

Extract the port information from the Model Under Test:

Press the Extract MUT Ports button on the toolbar.

Notice that the ports of the
fulladder model have been inserted
into the Stimulus and Results
diagram. If no signals appear,
make sure that language drop-
down on the toolbar is set to
VHDL.

Select the File>Save Timing
Diagram As menu to open a file
dialog. Save the diagram and name
it add4test.btim.

(Optional) Hide the Direction and Index Columns in the Label window:

By default the Direction and Index
columns are shown, but we have
hidden them in this tutorial to make
smaller images. Choose Options >
Drawing Preferences to open the
dialog. Then uncheck Show
Direction Icons and Show Index.

SynaptiCAD Tutorials196

Copyright © 2011, SynaptiCAD Sales, Inc.

(Sim) 2.3 Draw the test bench waveforms

Draw the stimulus on the input ports of the of the MUT and the expected output on the output signals.
You can draw anything and see the results, however the rest of the images shown in this tutorial will
be using the timing diagram shown below. If you do not want to draw the testbench then you can
copy the add4test.btim file from c:\Synapticad\Examples\TutorialFiles\Waveformer2MsimVHDL
directory into the project directory.

Draw the Test Bench

Draw the following timing diagram. If you have never used SynaptiCAD's drawing environment,
then read the rest of the instructions in this section and practice drawing random signals
before drawing the following diagram:

Notice that the black waveforms are the inputs and will generate code that will drive the MUT.
The blue waveforms are outputs of the MUT and represent expected outputs of the model.

Save the changes to add4test.btim using the File>Save Timing Diagram menu, as we will
use this btim file later to compare our expected results against the VCD results file generated
during simulation.

Basic Drawing Instructions (Skip to Section 2.4 if you can draw the timing diagram)

The timing diagram editor is always in drawing mode, so left clicking on a signal will draw a waveform.
The red state button controls the type of waveform that is drawn (high, low, tri-state, valid, invalid,
weak high, and weak low). The buttons toggle back and forth between two states, and the next state
is indicated by the little red T on top. Click on the state buttons to set the toggle and next state.

 To draw the waveform of a signal:

Place the mouse cursor inside the Diagram window at the same vertical row as the signal
name.The red state button on the button bar determines the type of waveform drawn. The
cursor shape also mirrors the red state button

Simulation 2: Using WaveFormer with ModelSim VHDL 197

Copyright © 2011, SynaptiCAD Sales, Inc.

Click the left
mouse
button. This
draws a
waveform
from the end
of the signal
to the mouse
cursor.

Move the
mouse to the
right and
click again
to draw
another
segment.

Keep
drawing from
left to right
across the
diagram.

Pressing the middle mouse button either toggles the state buttons or cycles through them
depending on the setting in the Design Preferences dialog. Choose Options > Design
Preferences menu to open the dialog.

There are several mouse-based editing techniques used to modify existing waveforms. These
techniques will only work on signals that are drawn. They will not work on generated signals like
clocks and simulated (purple) signals.

1) Drag-and-Drop a Signal Transitions:

To move one transition, click on
the transition and drag it to the
desired location.

To move all of the transitions on
one signal, hold down the <1>
and <2> number keys while
dragging. Holding down just the
<1> key moves all the edges to
the left, and the <2> key moves

SynaptiCAD Tutorials198

Copyright © 2011, SynaptiCAD Sales, Inc.

all the right.

To move transitions on different
signals, first select the
transitions by holding the
<CTRL> while clicking on
them. Then drag the transition
to desired location.

2) Click-and-Drag to insert a segment into a waveform:

Inside of a segment, click
and drag the cursor to insert
a segment

The inserted state is
determined by the red state
button

3) Change a segment's graphical state by selecting it and then pressing a state button:

Click in the middle of the segment to
select it (so that it has a green box
around it).

Click on a state button to apply that
graphical state to the segment. If you
change a segment to same level as an
adjacent section, the transition will turn
red to preserve the edge data. This
transition can be deleted if necessary.

4) Adding virtual state Information to a segment

For Signals, double-click on the
middle of a segment to open the Edit
Bus State dialog, and then type in a
new value into the Virtual edit box.

For Clocks, press the Hex button and then double-click on the middle of the segment to open
the Edit Bust State dialog. If the Hex button is not pressed, the double-click will open a
different dialog to allow editing of the clock.

(Sim) 2.4 Export Waveforms to VHDL

In the first steps of this tutorial, we created a project file and pressed the Extract MUT Ports button.
This also determined the model under test module. The project must remain open during the export of
the btim file in order for the model under test to be instantiated in the stimulus file. If the source files
in the project contained multiple modules that could be the top level MUT instance, you would need to
select the top level instance in the project window by right clicking on the desired top level instance.

Simulation 2: Using WaveFormer with ModelSim VHDL 199

Copyright © 2011, SynaptiCAD Sales, Inc.

Generate the VHDL test bench by exporting the timing diagram file.

Choose the Import/Export
> Export Timing
Diagram As menu option
to open the Export As
dialog.

Set the Save As Type
drop-down to VHDL w/Top
Level Test Bench (*.vhd).
This creates a VHDL file
called add4test.vhd
containing the stimulus
and instantiates a copy of
the model under test.

Once the file is generated it is also loaded into the Report window so that you can see the
generated code. If you cannot see the Report window, then choose the Window > Report
menu option.

(Sim) 2.5 Simulate VHDL test bench using ModelSim

First map the standard syncad library, syncad_vhdl_lib, so that ModelSim can locate it in this project
(this step requires that you have previously compiled the syncad library as described at the beginning
of this tutorial). This step only needs to be done once for a project. Next, run the simulation and
generate the vcd results file, you can either use the ModelSim do script included with this tutorial or
manually type the commands.

Map SynaptiCAD library to ModelSim:

Launch a DOS command prompt and type the following commands:

cd \synapticad\project\add4
vmap syncad_vhdl_lib C:\Synapticad\lib\vhdl\modelsim_vhdl_lib

EITHER run the do script to simulate, by typing from the command prompt:

copy c:\Synapticad\Examples\TutorialFiles\Waveformer2MsimVHDL\add4test.do .

modelsim -do add4test.do

SynaptiCAD Tutorials200

Copyright © 2011, SynaptiCAD Sales, Inc.

OR type the following individual commands below

1. To generate library files:

vlib work

2. To compile the source files:

vcom add4.vhd add4test.vhd

3. Select the top level module to simulate (this will launch the ModelSim GUI):

vsim testbench

4. In the console window of the ModelSim GUI, set the name of the vcd dump file:

VSIM> vcd file add4.vcd

5. Specify the signals to dump to the vcd file (top level signals in the design):

VSIM> vcd add /testbench/*

6. Simulate the design+stimulus

VSIM> run –all

7. Exit the simulator (the vcd file will be created by ModelSim at the end of this step):

VSIM> quit –f

(Sim) 2.6 Compare simulation results against expected results

In this step we will compare the simulation results against the expected waveforms that we drew in an
earlier section. The compare feature is an option that can be added on to WaveFormer Pro.

A) Load the Simulation Results file into WaveFormer Pro

Select the Import/Export > Import Timing Diagram From menu option and load the add4.
vcd file created in the previous step to open the Import Waveforms dialog.

Simulation 2: Using WaveFormer with ModelSim VHDL 201

Copyright © 2011, SynaptiCAD Sales, Inc.

Check the Collapse to Virtual Buses box, so that the signals will be imported as buses
instead of as individual bits.

In the left hand pane, select the All signals node then press the => button to move the
signals to the right hand pane. Then press OK to import the diagram.

B) Strip out the Simulation Model Names

Before we can compare the VCD file to the expected results btim file, we must make sure that the
signal names are the same. During simulation, the model name "testbench." prefix was added to
each of the VCD’s signals. We can either strip out the name from the simulation file or add the prefix
to the expected waveforms. Either way, we can use the Search and Rename Signals dialog to strip or
add a prefix. Here we will strip the prefix from the simulation vcd file.

Select the Edit > Search and Rename Signals menu to open the Search and Rename
Signals dialog.

SynaptiCAD Tutorials202

Copyright © 2011, SynaptiCAD Sales, Inc.

Check Selected Signal Names to make the dialog
operate on the signals. Since we did not have any signals
selected in the diagram, this will operate on all the signals
by default.

Check Replace to make the dialog do a replace. If we
had decided to add "testbench." to the names in the
timing diagram, we would have to use insert prefix to add
the prefix.

Set the Old Name pattern to "testbench." making sure
that you include the period after testbench.

Leave Signal Name Replacement blank, because we
just want to strip out the name.

Press OK to strip the prefix from the signal names.

C) Compare The Timing Diagrams

To do this step, you will need to have a license for the Compare Feature. This is normally turned on in
the evaluation version, but must be purchased in the full version.

Choose the File > Compare Timing Diagram menu to open a file dialog and select the file
add4test.btim that you created earlier in the tutorial.

The differences between the VCD file and the expected results file will show up in red. The
differences are also displayed in list form in the Differences tab in the Report window.

When drawing the btim file waveforms, you may have some differences with the diagram
shown on the tutorial. These differences will show up as highlighted lines in red in the
comparison diagram. Minor differences can be removed by using the compare tolerances.

Simulation 2: Using WaveFormer with ModelSim VHDL 203

Copyright © 2011, SynaptiCAD Sales, Inc.

Click the SET ALL button on the compare toolbar to
open the Signal Properties dialog

Notice that the Name box
is greyed out. This means
that the dialog is operating
on all the compare signals.

Type in a tolerance of 5 for
both the the –Tol and +Tol
controls. This will allow the
compare feature to ignore
small changes in values.

Click the OK button to apply
the changes

Press the Compare All Compare Signals button to re-compare the
waveform signals.

Below is the resulting diagram. Notice that the thinner lines in red have now disappeared. The
remaining differences occur at the end of the waveforms because the simulator stops the
simulation as soon as there are no more changes on the waveforms.

SynaptiCAD Tutorials204

Copyright © 2011, SynaptiCAD Sales, Inc.

Also look at the Differences tab in Report window, which shows a hyperlinked list of the
differences. If you cannot see the Report window, then choose the Window > Report menu
option to bring it to the front.

(Sim) 2.7 Summary of Using WaveFormer with ModelSim VHDL

Congratulations! You have now learned how to use WaveFormer Pro with ModelTech’s ModelSim
VHDL. In this tutorial we covered how to create a new .hpj project in WaveFormer, adding new source
files to the project, and drawing the necessary stimulus on the input and output signals. We also
learned how to export waveforms to VHDL and how to generate the .vcd file required for testing
through ModelSim. Last, but not least, we learned how to compare the simulation results against the
expected results.

Waveform Comparison Tutorial 205

Copyright © 2011, SynaptiCAD Sales, Inc.

Waveform Comparison Tutorial

Waveform Comparison is an optional module that can be added to most of SynaptiCAD’s products
that have a waveform editing window. This feature allows comparison between two timing diagrams or
between individual signals in a timing diagram. The results of two simulation runs, or of logic analyzer
data and a simulation run, can be compared very easily using this feature.

(Compare) 1: Setup for using Compare

This tutorial requires a Compare Option license plus a license for one of the SynaptiCAD products
that supports this feature. To obtain a temporary license for evaluation purposes, complete the form
under the Help > Request License menu item and contact our sales department.

Run WaveFormer Pro or higher:

Run WaveFormer Pro, DataSheet Pro, VeriLogger, or one of the more advanced products. If
you are evaluating Timing Diagrammer Pro and you would like to learn about the compare
features, close the program and restart the evaluation version in WaveFormer Pro mode.

SynaptiCAD Tutorials206

Copyright © 2011, SynaptiCAD Sales, Inc.

Load the Starting Timing Diagram:

This tutorial uses several files contained in the the Examples\TutorialFiles\WaveFormComparison
subdirectory of the installation directory (C:\SynaptiCAD by default on Windows). These files are
examples of simulation results, logic analyzer data, and timing diagram files. To get started:

Open the file singleSignalComparison.btim in the SynaptiCAD\Examples\TutorialFiles\
WaveFormComparison directory.

Select the File > Save As menu option, and save this file as mysingleSignalComparison.
btim.

(Compare) 2: Individual Compare Signals

When comparing two waveforms, the signal names must match and one of the signals must be
marked as compare in its Signal Properties dialog. When comparing two entire files, these options
will be set automatically. However, if you are comparing individual signals, you will need to set these
by hand.

Add a Signal and set its compare setting and change its name:

Press the Add Signal button to add
 a signal to the diagram.

Waveform Comparison Tutorial 207

Copyright © 2011, SynaptiCAD Sales, Inc.

Double click on the name of the new
signal (SIG0) to open its Signal
Properties dialog.

Change the name to
Signal_To_Compare to exactly
match the other signal in the
diagram.

Set the signal type to Compare.

Notice that the name of the compare
signal is blue.

Draw the waveform for the Compare Signal:

We will use the Waveform Equation generator to create a waveform that is similar to the one on the
original signal.

In the Signal Properties dialog of the
compare signal, modify the
expression in the Wfm Eqn so that it
reads:

8ns=Z (3=1 7=0)*5 7=H 10=L

6=V 8=X

Press the Wfm Eqn button to drawn
the specified waveform.

Perform the Compare:

Press the Compare button in either
the dialog or on the button bar to
calculate the comparison.

Press the OK button to close the
Signal Properties dialog.

The red portions of the compare
signal mark the areas where
differences were detected. Also
notice that the name is in red to
indicate that there are differences
somewhere on the signal.

SynaptiCAD Tutorials208

Copyright © 2011, SynaptiCAD Sales, Inc.

(Compare) 3: Experiment with Tolerance

Each Compare signal has a plus and minus tolerance setting. The tolerance settings specify regions
around the reference signal in which to ignore any differences. This is one method for ignoring small
differences during a comparison. In this section we will copy the compare signal a couple of times
and set each compare signal with a different tolerance.

Copy the Compare signal and paste it twice:

Select the Compare signal by clicking on the red Signal_To_Compare name.

Press <Ctrl>C keys on the keyboard to copy the signal.

Select the Edit > Paste Signal(s)
menu option or press <Ctrl>P to paste
a copy of the original compare signal.

Past again to create a third compare
signal.

Set the Tolerance settings:

Double click on first compare signal
to open the Signal Properties dialog.

Notice that the tolerance settings are
at zero. This means that any variation
will be flagged as an error.

We will leave this signal at zero
tolerance so that you can compare it
to the other two signals

Double click on the second compare
signal and change its +Tol to 2.

Double click on the third compare
signal and change its +Tol to 3.

Notice that the waveforms are still
displaying the original compare
information. This is because
compares are only calculated when
you press the compare button.

Press the Compare button to perform
the compare.

Waveform Comparison Tutorial 209

Copyright © 2011, SynaptiCAD Sales, Inc.

Notice that the second compare signal only has one less difference than the first.

Notice that the third compare signals with a tolerance of 3 has eliminated most of the
differences between itself and the original signal.

You can experiment with the
Tolerance setting by dragging edges
on the compare signals and the
pressing the compare button.

Measure the differences in the edges
by using the mouse button and the
Blue readout.

(Compare) 4: Compare Timing Diagrams

When comparing two files, the file that is being compared/merged into the reference diagram must be
a SynaptiCAD btim file. However, since WaveFormer reads many different file formats, it is a simple
operation to translate a waveform file to .btim. In this step we will first convert a VCD (Verilog
simulation file) into a .btim file. Then we will use the converted file to compare against a logic analyzer
file. This shows how a simulation file could be compared with data captured from an actual circuit.

Import the VCD file and save it as a BTIM file:

Select the Import/Export > Import
Timing Diagram From menu to open
a special version of the Open Timing
Diagram dialog that remembers the file
type of the last file imported.

Select the Verilog Value Change
Dump (*.dump, *.vcd) option from the
File of Type list. This is a file generated
by a Verilog simulator.

Select the simulationResults.vcd in the
SynaptiCAD\Examples\TutorialFiles\WaveFormComparison directory.

Press Open to close the file dialog and launch the Import Waveforms dialog. This dialog
allows you to selectively load signals from really large files.

SynaptiCAD Tutorials210

Copyright © 2011, SynaptiCAD Sales, Inc.

Select the All Signals
folder in the Available
Signals side of the
dialog by left clicking on
it.

Press the right arrow
button to place these
signals in the Signals to
Import tree.

Press OK to close the
dialog and import the
signals.

Use the Zoom In button to get a better view of the
changing signal edges.

Choose the File > Save Timing Diagram As
menu to open the Save File dialog.

Choose Timing Diagram - Binary (*.btim) from
the type drop-down and save the file as
simulationResults.btim.

Load the Logic Analyzer Data file:

Next we will open a data file that is in a Spreadsheet format similar to that generated by a Tektronix
logic analyzer.

Select the File > Open Timing Diagram From menu to open the File dialog. We are
opening the file this way just to skip the Import Waveforms dialog step that was demonstrated
with the VCD file load.

Select the Test Vector Spreadsheet/Tektronix (*.txt) option from the File of Type list.

Select the analyzerData.txt in the
SynaptiCAD\Examples\TutorialFiles\WaveFormComparison directory.

Use File > Save Timing Diagram as menu to save the file as my_analyzerData.txt

Compare the diagrams:

When two diagrams are compared, the signals from the second diagram selected are brought into the
first diagram as compare signals. These signals can either be grouped at the bottom of the open
diagram or the Compare signals can be ’interleaved’ with the original signals. That is, the Compare
signal for a given original signal will be inserted directly under the original signal. This behavior is
controlled using the View > Compare and Merge > Interleave Compare and Merge Signals

Waveform Comparison Tutorial 211

Copyright © 2011, SynaptiCAD Sales, Inc.

menu option. This tutorial will have the interleave feature turned on.

Select the File > Compare Timing Diagram... menu option to launch the Compare dialog.
Notice that the default file type is Timing Diagram (*.tim, *.btim).

Select the simulationResults.btim file that you converted earlier in this section.

Click Open to compare the two diagrams.

Notice that the Compare signals are placed immediately following the signals that they are
being compared to since the Interleave Compare and Merge Signals option is on.

Notice that two of the signal labels, Test.pin2 and Test.pin3, have turned red because there
are differences on these signals.

Tip: If the data sets being compared have slightly different naming schemes, then the signals will not
properly interleave because the program will not be able to properly match the signals for comparison.
The Edit > Search and Rename Signals feature is handy for modifying one of the sets of signal
names in the case. This feature performs pattern matching on the signal names and allows you to
replace characters in the name, or append/remove a prefix or a suffix to the signal name. We will
demonstrate this in Section 9 of this tutorial.

(Compare) 5: Set All Compare Signal Properties

In section 3 we showed how to edit the properties of one compare signal by double clicking on the
signal's name and making the changes in the Signal Properties dialog. However, it is typically
desirable to edit all of the compare signal properties at the same time. The SET ALL button on the
Compare button bar will select all of the compare signals and open the Signal Properties dialog in a
special mode for editing all of the selected signals.

Either press the SET ALL button or choose the View > Compare and
Merge > Edit Compare Signals menu to select all the compare signals
and open the Signal Properties dialog.

Note: You can choose to deselect individual signals prior to modifying the
signal properties. This may be useful if you want to specify a Tolerance
range for all but one signal, for example.

SynaptiCAD Tutorials212

Copyright © 2011, SynaptiCAD Sales, Inc.

Notice that only the compare signals are selected.

Also notice that the Name box in the Signal Properties dialog is grayed out to show that you
are editing only properties that can be the same between the selected signals.

Set the -Tol to 2 ns.

Press the Compare button.

Notice that with the -Tolerance set at 2ns, the Test.pin2 signal no longer has any differences
to report.

Set the -Tolerance back to 0ns and press the Compare button, so that we will have more
differences to look at in the next section.

Close the Signal Properties dialog.

Waveform Comparison Tutorial 213

Copyright © 2011, SynaptiCAD Sales, Inc.

(Compare) 6: Find the Differences

So far we have found the differences between signals by looking for the red marks on the compare
signals, which is sufficient for small files. However for very large files with only a few differences you
may want to use one of these methods for finding the differences:

(1) Use the Compare tool bar to show the next difference:

The three middle buttons on the Compare toolbar are used to
move between the differences in the diagram.

Press the Move Next button a few times and watch how the
selection in the diagram moves to the next difference in time.

Press the Move Previous button and watch how to selection in
the diagram moves to the previous difference.

Use the mouse to select an edge on a compare signal and then use the Move Next or Move
Previous to jump to the next or previous difference.

Press the Move to First Difference and watch how it
highlights the first difference found after time 0 in the diagram.

(2) Double click on a line in the Differences Tab of the Report Window

After a compare is performed, there will be a tab in the Report window called Differences that lists one
difference per line in time order.

Arrange the Report and Diagram window so that you can see both windows at the same time.
If your Report window is not visible, select the Windows > Report Window menu option to
bring the window to the foreground.

Click on the Differences tab to bring this page to the front of the Report window.

SynaptiCAD Tutorials214

Copyright © 2011, SynaptiCAD Sales, Inc.

In this example, the first difference in time is on Test.pin3. The difference started at time
2.5ns and ended at time 3ns. The Reference Signal had state value of 0 while the Compare
Signal had a State of 1.

Double click a line in the Report window and notice how the corresponding difference in the
diagram window is also highlighted. If this was a very large file and the difference was not
displayed in the window, the diagram would have also scrolled over so that you could see the
highlighted difference.

(3) Use an external program to process the Differences File

The data displayed in the Differences tab of the Report window is loaded from a tab-delimited text file
generated during the comparison. This data can be backed up and stored for later reference. The file
in this example is named analyzerData_diff.txt (formed from <referenceFileName>_diff.txt). You can
use the Report window to view this file by selecting the Report > Open Report Tab menu item to
open the file.

(Compare) 7: Perform a Clocked Comparison

A clocked comparison compares the signal states at clock edges instead of continuously. In this
section we will add a clock to the diagram and then set the clock properties of all of the compare
signals to reference the clock.

Add a clock signal with grid lines on the positive edges:

Press the Add Clock button to open
the Edit Clock Parameters dialog.

Set the Period of the clock to 2ns.

Press the OK button to close the
dialog and add the clock to the
diagram.

Double click on the CLK0 name to
open the Signals Properties dialog.

Waveform Comparison Tutorial 215

Copyright © 2011, SynaptiCAD Sales, Inc.

Press the Grid Lines button to open
the Grid Options dialog. We will add a
grid to the positive edge of the dialog
so that it will be easy to see the
sampling points on the diagram.

Check the Enable Grid box to enable
the controls in the dialog.

Enter a Starting Event of 1. This
means that the first grid line is drawn
on the first event of the clock (in this
case it is at 0ns on the positive edge).

Enter an Events Per Line of 2, so
that the grid only draws on every-other
line.

Press the Apply button and make sure that the gridlines are on the positive edges of the
clock.

Press Ok to close the Grid Options dialog, then press Ok to close the Signal Properties
dialog.

Make the Compare Signals reference the sampling clock:

Either press the SET ALL button or choose the View > Compare and
Merge > Edit Compare Signals menu to select all the compare signals
and open the Signal Properties dialog.

Set the Clock to CLK0 and set the
Edge/Level to pos.

Press the Compare button to apply
the changes and perform a new
comparison.

SynaptiCAD Tutorials216

Copyright © 2011, SynaptiCAD Sales, Inc.

Notice that there are now only two differences in the diagram. These two differences occur on
the 8ns (on Test.pin3) and 10ns (on Test.pin2) rising edges of the clock.

You can experiment with changing the clocking edge to neg to see how the compare
changes.

(Compare) 8: Compare During Clock Cycle Windows

The clocked comparison described in the previous step provides for comparison in state of signals
around clock edges, but sometimes you need to check for signal differences during a window of time
that is relative to the clock cycle, but not around the clock edge itself. You can use a second clock,
offset from the first, to create windows during which to compare during the high or low segments of
the original clock instead.

Add Offset Clock to Diagram

Since the window comparisons in this example are to be relative to the original clock, the offset clock
will have the same frequency and period as the original clock, but have a different starting offset value.

Add a second clock to the diagram and
set the following in the Edit Clock
Properties dialog.

Set the Name to Offset_Clock, the
Period to 2ns, and the Starting Offset to
.5.

Press OK to close the Edit Clock
Properties dialog and apply the changes.

Notice the Offset_Clock now starts
halfway through the first segment of
CLK0.

Waveform Comparison Tutorial 217

Copyright © 2011, SynaptiCAD Sales, Inc.

Change the Compare Signals to Use the Offset Clock

Next, change the three Compare signals to use the Offset_Clock as the clocking signal and use the
Tolerance settings to create the window for comparison:

Either press the SET ALL button or choose the View > Compare and
Merge > Edit Compare Signals menu to select all the compare signals
and open the Signal Properties dialog.

Set the Clock to
Offset_Clock and the Edge/
Level to pos.

Set both Tolerance values
to 0.25 to create the testing
window.

Press the Compare button
to apply the changes and
perform the comparison.

Below is an image that we made by first zooming into the diagram. Then we placed two
markers around the sampling clock edge at exactly -.25 ns and +.25 ns around the edge to
show the sampling region created by the Tolerance setting. We also used a text object
attached to the clock edge to call attention to it.

Notice that the difference between the two Test.pin3 signals continues beyond the compare
window.

SynaptiCAD Tutorials218

Copyright © 2011, SynaptiCAD Sales, Inc.

(Compare) 9: Mask Sections to Exclude Comparison

It is sometimes useful to mask some segments during comparison. In this example, we will create a
Compare_Enable signal that will specify the specific clock segments over which we want the
comparison to be performed. Then we will use a Boolean equation (Offset_Clock and
Compare_Enable) in a simulated signal to define the region in which to perform the compare. Since
this step uses simulated signals you will need to be using a product that supports this feature like
WaveFormer Pro (not one of the Viewers).

Search and Replace Signal Names:

First, we will change the names of the signals in the diagram so that when we add the simulated
signal, we do not get simulation errors (with the signal names Test.* the simulator will look for a
module that we will not have defined).

Press <CTRL>A to select all of the signals in the diagram. The Search and Rename signals
feature will search the selected signals. If no signals are selected, then a dialog will appear
asking if you would like to select all signals in the diagram.

Select the Edit > Search and
Rename Signals menu option to
open the Search and Rename
Signals dialog.

Enter Test. in the Old Name edit
box.

Enter Test_ in the Signal Name
Replacement edit box.

Click OK to close the dialog and
rename the signals.

Add the Compare Enable Signal:

Add a new signal called Compare_Enable and draw the following waveform that is high
between 4ns and 8ns

Add the Simulated Masking Signal

Next, place a simulated signal in the diagram to use as the clocking signal for the comparison:

Waveform Comparison Tutorial 219

Copyright © 2011, SynaptiCAD Sales, Inc.

Add a signal to the diagram and
set the following properties in the
Signal Properties dialog:

Set the Name to Masking_Signal.

Select the Simulate radio button
(instead of Drive).

Enter Offset_Clock and
Compare_Enable in the Boolean
Equation edit box.

Press the Simulate Once button to generate the simulated signal.

Notice that the masking signal is high only during the times that both the Compare_Enable
and the Offset_Clock are high. These are the clock segments that are not masked. The
comparison will be performed during these segments.

Use the Masking Signal to Mask Clock Segments

Next we will edit the compare signals so that they use the new Masking_Signal as a clock.

Either press the SET ALL button or choose the View > Compare and
Merge > Edit Compare Signals menu to select all the compare signals
and open the Signal Properties dialog.

Set the Clock to Masking_Signal.

Click Compare to apply the
changes and perform the
comparison.

SynaptiCAD Tutorials220

Copyright © 2011, SynaptiCAD Sales, Inc.

Notice that the first and last differences that were previously in the diagram have now
disappeared, because they are masked from the comparison.

(Compare) 10: Don't Care Regions

A related function to the masking signals is don’t care regions. Sometimes you may not want to
compare certain regions in time on a particular signal. One case would be on a bus signal where the
actual data did not matter. If you want the compare function to skip a particular section, then just turn
the waveform into a valid region on the reference signal.

To create a don’t care region:

On the test.pin2 reference signal (not the compare signal), click in the high segment to select
it.

Press the VAL button in the button bar at the top of the waveform window. This will change the
waveform to a valid waveform.

Press the Compare button to apply the changes and perform the comparison.

Notice that the difference is no longer flagged, because the don't care segment on the
reference signal blocks the compare.

Waveform Comparison Tutorial 221

Copyright © 2011, SynaptiCAD Sales, Inc.

(Compare) 11: Adjust the Time Difference Between Two
Diagrams

The time difference between two timing diagrams can be easily adjusted using the Edit Waveform
Edges dialog. In this section we will compare two diagrams that are slightly offset in time.

Compare the two data sets:

Select the File > Open Timing Diagram From menu and load the original analyzerData.
txt file located in the SynaptiCAD\Examples\TutorialFiles\WaveFormComparison
directory. Don't forget to set the file type to Test Vector Spreadsheet/Tektronix (*.txt). Note:
If you accidentally saved over this file during a previous step, simply delete all the signals
except the three Test reference signals, change the names back to dots instead of underlines,
and change the valid state on pin2 to a high state.

Select the File > Compare Timing Diagram menu option and select the
simulationResults_offset.btim to load the file and perform a compare.

Notice that all three of the compare signals have a longer starting segment than their
counterparts. This causes much of the diagram to show as differences, when in reality the two
data sets have a time offset.

Use the mouse and the time readout buttons to determine the amount of time that the diagram
is offset from the other (10 ns). Also double click on an edge to open the Edge Properties
dialog and find the exact times of edges.

To modify the time difference between two diagrams:

The offset time can either be removed from the compare signals or it can be added to the reference
signals. In this tutorial the offset will be removed from the compare signals because the SET ALL
button makes it easy to select the compare signals.

Select all the compare waveforms by pressing the SET ALL button. This
also opens the Signal Properties dialog in group editing mode, but we will
not be using it so you can close the dialog.

SynaptiCAD Tutorials222

Copyright © 2011, SynaptiCAD Sales, Inc.

Select the Edit > Edit
Waveform Edges menu
option to open the Edit
Waveform Edge dialog.

Notice that the time range is
the entire timing diagram.

Select the Shift Edges in
Range radio button.

Enter -10 into the Amount
of time to shift edit box.
The time unit, ns, in implied
by the display time unit of
the diagram.

Press OK to shift the
selected waveforms and
close the dialog

Press the compare button to perform another
compare.

Tip: The Edit Waveform Edges dialog can also be used to perform frequency multiplication. See the
Timing Diagram Editors manual Section 1.7: Editing Waveform Edges from an Equation for more
information on this dialog.

(Compare) 12: Summary of the Comparison Tutorial

Congratulations, you have completed the Waveform Comparison Tutorial! You have compared
individual signals by changing the names to match and changing the type of one signal to Compare.
You have compared two timing diagrams and edited the Tolerance and Clock settings using the Set
All button. You have also used the Edit Waveform Edges function to adjust the timing of a diagram in
order to prepare it for a compare.

As a side note, file comparison can also be done automatically using the batch mode feature
discussed in the Timing Diagram Editors manual Section 11.5 Batch Mode.

Waveform Comparison Tutorial 223

Copyright © 2011, SynaptiCAD Sales, Inc.

SynaptiCAD Tutorials224

Copyright © 2011, SynaptiCAD Sales, Inc.

Gigawave and WaveViewer Viewer Tutorial

This tutorial covers the following topics: opening a waveform file, the differences between opening and
importing a file, saving a .btim file, creating a filter file to selectively load sets of signals from a
waveform file, and available licensing options for enhancing WaveViewer.

(Viewer) 1: Converting a vcd file into a btim file

When viewing non-native waveform formats, such as VCD files, we recommend first converting the file
to SynaptiCAD’s native BTIM format. The resulting compressed BTIM file will generally be around
200x smaller than the original file and will load much faster (for example, a BTIM file will typically load
around 500x faster than an equivalent VCD file).

To convert a VCD to a BTIM file, follow the steps below:

Load the exampleTim.vcd VCD file into the viewer (this is a large file so it may take a few
seconds):

Choose File > Open Timing Diagram menu option to launch the Open File dialog.

In the File of type dropdown, choose Verilog Value Change Dump.

Select the file C:\SynaptiCAD\Examples\exampleTim.vcd.

Click the open button to load the diagram.

Save the diagram as a BTIM file

Choose File >Save As menu option to open the Export Timing Diagram As dialog.

In the Save as type dropdown, choose Timing diagram – Binary. This will change the
filename to exampleTim.btim.

Click Save to close the dialog box.

Close the diagram so we can load a subset of the signals in the next step.

(Viewer) 2: Importing a subset of the Waveforms

In the previous section, we loaded an entire waveform file using the File > Open menu. It is also
possible to load a subset of the waveforms in a file by using the Import/Export > Import Timing
Diagram menu.

To import a subset of waveforms from a file:

Load the exampleTim.btim we created in the previous step using the Import/Export menu:

Choose the Import/Export > Import Timing Diagram From menu to open the OpenFile
dialog.

In the File of type dropdown, choose Timing diagram – Binary.

Select the file c:\SynaptiCAD\Examples\exampleTim.btim.

Press the Open button to close this dialog and open the Import Waveforms dialog.

In the Import Waveforms dialog, move the ABUS[7:0], DBUS[7:0], and logfile[31:0] signals from
the Available Signals list to the Signals to Import list by selecting the signal names and
clicking the -> button.

Note: Signals can be moved in groups by pressing the control button and selecting several
signals at once.

Gigawave and WaveViewer Viewer Tutorial 225

Copyright © 2011, SynaptiCAD Sales, Inc.

Note: The Import Waveforms dialog has several useful options that are not covered in the tutorial:

Checking Alphabetize Signal Order will cause the signals to be alphabetized when they are
displayed in the viewer. Otherwise the signals will appear in the timing diagram in the same order
that they are found in the file they are imported from.

Checking Collapse signals to buses causes all numbered signals (e.g. bus0, bus1, bus2)
to be collapsed into virtual buses (bus[2:0]).

The Time Interval section allows waveform data to be limited to only a specific section of
time.

Click the OK button to close the dialog and load waveforms into WaveViewer.

SynaptiCAD Tutorials226

Copyright © 2011, SynaptiCAD Sales, Inc.

(Viewer) 3: Creating a Filter File to selectively load signals

The Set Filter File feature provides the user with the ability to specify an optional "filter file" that
controls what signals get imported from a waveform file (e.g. a VCD file) and the order in which they
get imported. The signal properties, such as MSB, LSB, and direction, are also controlled by the
signal information that is stored in the filter file. Filter files do not contain any waveform data. Below
we will change the ordering of the signals we imported in step 2 and save them into a filter file.

To create a filter file using WaveViewer:

Select the File > Save As menu option to open the Save As dialog.

In the Save As type dropdown, select Waveform filter (*.tim) if it is not already selected.

Type vcdfilter as the name of the filter file in the File name edit box.

Click the Save button to create the filter file.

Once a filter file is created, it needs to be set as the current filter file for the Filter file feature to be
enabled:

Select the Options > Set Filter File menu option to open the Filter Diagram File dialog.

Check the Use Filter checkbox.

Select the file by clicking the Browse button and finding where you saved it in the previous
section.

Click OK to close the dialog.

When a filter file is set, only the filtered signals will be loaded. The filter file will operate on all files that
are loaded, regardless of the file format.

To try this out, let’s load the original BTIM file with the filter enabled:

Choose the File > Open timing diagram menu option to launch the Open File dialog.

Select the file C:\SynaptiCAD\Examples\exampleTim.btim.

Click the Open button to load the diagram. Note that only the signals that match the signal
names in the filter diagram have been loaded.

To disable the Filter file feature:

Select the Options > Set Filter Diagram File menu option to open the Filter Diagram File
dialog.

Uncheck the Use Filter checkbox.

Click OK to close the dialog and disable the Filter File feature. Any diagrams loaded after this
point will load normally, without filtering.

Close the currently open timing diagram, then choose the File > Open Timing Diagram menu
and reload the exampleTim.btim file again. Note that all signals are loaded from the diagram

Gigawave and WaveViewer Viewer Tutorial 227

Copyright © 2011, SynaptiCAD Sales, Inc.

because we’ve disabled the filter file.

(Viewer) 4: Show and Hide Signals in the display

Instead of selectively loading signals, it’s often easier to load all the signals initially and then hide all
but the signals of interest.

Follow the steps below to hide a set of signals:

Click on the View>Show and Hide Signals menu option to open the Show or Hide Signals
dialog. The hidden signals are shown on the left side and visible signals (in this case, all signals)
on the right.

Select signals on the right side (Visible Signals) and press the button, followed by the OK
button to hide these signals.

To make the signals visible again:

Reopen the dialog and select All Signals from the list on the left side (Available Signals) and
press the button, followed by the OK button, and the signals will reappear in the diagram
window.

You can also use the Find edit boxes to select a set of signal names that match a particular regular
expression. Follow the steps below to hide all the signals that have "tbread" in their signal name:

Type "tbread" in the Find edit box in the Visible Signals section of the dialog and press the All
button to select the matching signals.

Press the button to move these signals to the list of signals to be hidden.

Press Ok to hide these signals.

SynaptiCAD Tutorials228

Copyright © 2011, SynaptiCAD Sales, Inc.

(Viewer) 5: Options: Gigawave, Waveform
Comparison,Transaction Tracking

Several optional features can be purchased to extend the power and functionality of the free
WaveViewer:

The GigaWave feature converts WaveViewer into GigaWave Viewer, a high capacity waveform
viewer capable of handling multi-gigabyte VCD files. Without GigaWave, WaveViewer is limited to
diagrams of less than 10,000 signals and less than 1 million waveform state changes. The GigaWave
feature also comes with a PLI-based library that can be integrated with your favorite simulator to
directly generate highly compressed BTIM files (no intermediate dump to VCD is required). Using
direct BTIM waveform dumping can speed up simulation by up to 3x compared to the same
simulation using an ordinary VCD dump because of the reduction in file I/O, and the resulting files are
generally 200x smaller.

The Waveform Comparison feature lets users compare waveforms for two timing diagrams or
individual signals. This feature is exceptionally useful comparing two different simulation runs, as well
as for comparing logic analyzer data to a simulation run. The specific regions where waveforms differ
will turn red when the two waveforms are compared. In addition to standard waveform comparison,
where all differences are detected, the comparison feature also supports "Clocked comparison" where
waveforms are only checked at clock edges. Tolerances can also be specified to determine what
constitutes a significant difference between two waveforms. For more information on using the
Waveform comparison feature, please refer SynaptiCAD On-Line Help > Bug Hunter Pro and
VeriLogger Pro Table of Contents > Chapter 5: Waveforms and Test Bench Generation > 5.4
Waveform Comparisons (Optional Features)

The new Transaction Tracking feature lets users view waveform data as "transactions" instead of
as just signals. The user specifies PSL Sugar expressions that describe what transactions to search
for, and the transaction tracker search engine finds matching transaction records and displays them
graphically in the timing diagram window.

Gigawave and WaveViewer Viewer Tutorial 229

Copyright © 2011, SynaptiCAD Sales, Inc.

(Viewer) 6: Waveviewer/GigaWave Viewer Tutorial Summary

Congratulations! You have completed the WaveViewer and GigaWave Viewer tutorial. In this tutorial
we introduced various techniques for opening, importing, saving and converting .vcd files into btim files
for faster file loading. We created a filter file and used it to selectively load signals (filter files can also
be used to reorder signals and override the default properties on the loaded signals). We also covered
the differences between GigaWave Viewer and WaveViewer and briefly discussed the optional
Waveform Comparison and Transaction Tracking features. More information on these topics can be
found in the online help.

SynaptiCAD Tutorials230

Copyright © 2011, SynaptiCAD Sales, Inc.

Transaction Tracker Tutorial

This tutorial explores semantic differences between some of the most commonly used PSL
operators. The assertions in this tutorial have been kept very simple, so that it is easy to see the
differences between the operators. It is important to understand these distinctions before attempting
to write practical, real world assertions.

For all the examples in this tutorial, we use two input signals (SIG0 and BUS[7:0]) and all the
assertions are clocked off the positive edge of CLK0. The assertions will make a new match attempt
on each positive edge of CLK0, even though previous match attempts by the assertion are still in

Transaction Tracker Tutorial 231

Copyright © 2011, SynaptiCAD Sales, Inc.

progress. When such overlapping match attempts occur, additional "overflow" signals will be created
to display the resulting transaction records without overlapping them on a single result signal. These
overlap signals are creating dynamically as needed during the simulation, and get cleaned up
automatically at the beginning of any new simulation run.

The above image shows all of the results for the following equations:

Match all occurrences of simple pattern one_SIG0 = {SIG0}

Match consecutive occurrences with Concatenation Operator two_SIG0 = {SIG0;SIG0}

Match with consecutive Repetition Operator three_SIG0 = {SIG0[*3]}

Match with non-consecutive Repetition Operator three_SIG0_nonconsecutive = {SIG0[=3]}

Bit-slices and the Boolean operators and_ with_bitslice = {BUS[1:0] & BUS[3:2]}

Implication operator implication = {{SIG0} |-> {SIG0}}

Implication Next-Cycle operator implication_next_cycle = {{SIG0} |=> {SIG0}}

PSL Property until_SIG0 = ((BUS > 2) until SIG0)

(TT) 1: Open the Example File

You will need a Transaction Tracker License to complete this tutorial. If you do not have one, please
contact SynaptiCAD at sale@syncad.com.

Choose the menu option File > Open Timing Diagram to launch the File dialog.

Browse to the c:\SynaptiCAD\Examples\sugar\ directory and choose the psltutorial.btim file.

This file contains all the assertions discussed in this tutorial. As we go over each assertion, you can
double click on the associated signal in the timing diagram to see how the assertion was specified.

Hide the Direction and Index Columns in the Label window:

Choose Options > Drawing
Preferences to open the dialog. Then
uncheck Show Direction Icons and
Show Index.

(TT) 2: Match all occurrences of a simple pattern

one_SIG0 = {SIG0}

This sequence matches a single occurrence of SIG0 on the positive edge of CLK0. Since it is a
simple Boolean check, its transaction records have no time width and they display as spikes. It fails
to match at time 100, so the first spike is red, then passes for two cycles because SIG0 is high, then
fails again at time 400.

231

232

232

233

233

234

234

234

mailto:sale@syncad.com

SynaptiCAD Tutorials232

Copyright © 2011, SynaptiCAD Sales, Inc.

Double click on one_SIG0 to
open the Signal Properties
dialog. Note, that under the
Equation tab, the TE
Sequence is chosen. Also
note that the equation is just
{SIG0}.

If you click on the PSL tab,
you can see the actual PSL
code that is generated from the
information in the TE
Sequence equation and the
other controls in the Equation
tab.

(TT) 3: Match Consecutive Occurrences with Concatenation
Operator

two_SIG0 = {SIG0;SIG0}

This sequence matches two consecutive occurrences of SIG0. The first attempt at time 100 fails
immediately, because SIG0 is low, resulting in a red spike. The second attempt begins to match at
time 200, and then succeeds at time 300, since SIG0 is still high at time 300. A new attempt is also
begun at time 300, creating a transaction record that overlaps with the transaction record that started
at time 200, so the time 300 transaction is placed on an overflow signal (two_SIG1_1). SIG0 goes low
before time 400, so the time 300 transaction fails at time 400. A new transaction is also began at
time 400, which fails immediately, resulting in a red spike at time 400 on two_SIG0.

(TT) 4: Match with consecutive repetition Operator

three_SIG0 = {SIG0[*3]}

This sequences matches against 3 consecutive matches of SIG0. Note that this sequence could also
have been specified as {SIG0;SIG0;SIG0}, but this gets awkward for specifying large numbers of
repetitions of a pattern. There are no cases where SIG0 is high for 3 consecutive cycles, so all the
match attempts eventually fail. The transaction record at time 200 holds for the first 2 cycles, then

Transaction Tracker Tutorial 233

Copyright © 2011, SynaptiCAD Sales, Inc.

fails in the third cycle. Because it takes 3 clocks to fail, and two new matches are attempted during
this time, two overflow signals are required to display all the transaction records without overlap.

(TT) 5: Match with non-consecutive Repetition Operator

three_SIG0_nonconsecutive = {SIG0[=3]}

This sequence looks for 3 nonconsecutive occurrences of SIG0 since we used [=n] instead of the
consecutive operator [*n]. Note that SIG0 does not have to be true during the first cycle of the match
attempt, this operator only that we eventually see 3 clocks during which SIG0 is true, so we end up
with a large number of successful matches.

(TT) 6: Bit-slices and the Boolean operators

and_ with_bitslice = {BUS[1:0] & BUS[3:2]}

This assertion uses the bit slice operator to AND together the two least significant bits of BUS with
the next two bits of BUS. The result of this operation is considered true if the value is greater than 0,
so for Boolean truth, it is equivalent to: {(BUS[1] & BUS[3]) | (BUS[0] & BUS[2])}

The assertion matches at time 600 (when BUS has a value of 5, so BUS[3:2] =’b01 and BUS[1:0]
=’b01) and at time 800 (when BUS has a value of 7, so BUS[3:2] =’b01 and BUS[1:0]=’b11).

SynaptiCAD Tutorials234

Copyright © 2011, SynaptiCAD Sales, Inc.

(TT) 7: Implication operator

implication = {{SIG0} |-> {SIG0}}

The implication operator guarantees that if the left hand operand holds (the sequence specified by the
left hand operand succeeds), then the right hand operand will hold. If the left hand operand does not
hold, the implication operator will succeed regardless of whether the right hand operand holds.

In this assertion we use the implication operator to ensure that: if SIG0 is true during a clock cycle,
then SIG0 is true during this clock cycle. Therefore, this is not very a useful sequence as the
sequence will always hold and matches immediately, regardless of whether SIG0 is true or false.
Please note how this differs from the earlier {SIG0} assertion, which passes or fail each clock cycle
based on whether SIG0 is true or not.

(TT) 8: Implication Next-Cycle operator

implication_next_cycle = {{SIG0} |=> {SIG0}}

This assertion looks very similar to the previous one, but the implication operator |-> has been
replaced by the implication_next_cycle operator |=>. So this assertion is equivalent to: {{SIG0} |->
{true;SIG0}}. It checks that if SIG0 is true in the current cycle, it should be true in the next clock
cycle. So if SIG0 is false at the start of a match attempt, that match attempt succeeds immediately.
If SIG0 is true during the start of a match attempt, the match will succeed if SIG0 is true during the
next cycle, or fail if SIG0 is false during the next cycle. Compare this to the operation of the earlier
assertion {SIG0;SIG0} which fails when SIG0 is not true at the beginning of a match attempt.

(TT) 9: PSL Property

until_SIG0 = ((BUS > 2) until SIG0)

For this signal we used a PSL property instead of an assertion, so the assertion body is surrounded
by parenthesis instead of curly brackets. In the Signal Properties dialog, the equation edit box is TE
Property. The property checks each cycle to see if the value of BUS is greater than 2 until SIG0
becomes true. Note that for the matches attempted at time 500 and 700, SIG0 is true on the initial
clock cycle of the match, so the transaction record succeeds immediately.

Transaction Tracker Tutorial 235

Copyright © 2011, SynaptiCAD Sales, Inc.

(TT) 10: Summary of Transaction Tracker Tutorial

Congratulations, you have completed the Transaction Tracker Tutorial. You have viewed most of the
basic PSL terms and seen how they return results. When writing your own PSL equations, try
building up from smaller terms until you get the hang of the language.

SynaptiCAD Tutorials236

Copyright © 2011, SynaptiCAD Sales, Inc.

Index
- A -
Adding 13, 15, 24, 25

clock 13

parameters 25

setups 24

signals 15

Analog 76, 77, 83

Ramps by a function 83

Ramps with mouse 76

Spice output 70

Step signals 77

step voltage export 70

Analog Display checkbox

piecewise linear 70

Analog Signals 70

- B -
Base Time Unit 12

- C -
Clocks 13, 24

adding 13

adding setup 24

Comparison 218

Masking Segments 218

Compile SynaptiCAD Library Models 192

- D -
Drawing Waveforms 15

- L -
Label Equation 83

Ramp 83

- M -
Masking Segments During Comparison 218

Match all occurrences of a simple pattern 231

Match Consecutive Occurrences with Concatenation
Operator 232

Moving Signals 33

- O -
Open the Example File 231

- P -
Parameters 25

adding 25

- R -
Ramp function 83

Ramp Signals 70

Reordering Signals 33

- S -
Setups 24

adding 24

signals 15, 17, 33

adding 15

drawing waveforms 15

editing waveforms 17

moving 33

ramp 70

reordering 33

step 70

Step Signals 70

- W -
Waveform Comparison 218

masking segments 218

Waveforms 15

drawing 15

editing 17

	Timing Diagram Editor 1: Basic Drawing and Timing Analysis
	(TD) 1.1 Timing Diagram Editor Choices
	(TD) 1.2 Set the Base and Dispaly Time Unit
	(TD) 1.3. Add the Clock
	(TD) 1.4 Add the Signals
	(TD) 1.5 Drawing Signal Waveforms
	(TD) 1.6 Editing Signal Waveforms
	(TD) 1.7 Adjust Diagram to Match Figure
	(TD) 1.8 Add the D Flip-Flop Propagation Delay
	(TD) 1.9 Add the Inverter Propagation Delay
	(TD) 1.10 Add the Setup for the Dinput to Clock
	(TD) 1.11 Add a Free Parameter
	(TD) 1.12 Drawing with Equations
	(TD) 1.13 Drawing Virtual Busses
	(TD) 1.14 Drawing Group Buses and Differential Signals
	(TD) 1.15 Working with Drawing Environnment
	(TD) 1.16 Summary

	Timing Diagram Editor 2: Simulated Signals
	(TD) 2.1 Setup for Simulation
	(TD) 2.2 Simulate a Boolean Equation
	(TD) 2.3 Boolean Equations with Delays
	(TD) 2.4 Register and Latch Signals
	(TD) 2.5 Set and Clear Lines
	(TD) 2.6 Multi-bit Equations
	(TD) 2.7 Design a Multi-Bit Counter
	(TD) 2.8 End Diagram Marker Stops Simulation
	(TD) 2.9 Behavioral HDL Code
	(TD) 2.10 Simulated Bus Signals
	(TD) 2.11 Summary of Simulated Signals Tutorial

	Timing Diagram Editor 3: Display and Documentation
	(TD) 3.1 Setup for the Tutorial
	(TD) 3.2 Parameter Display Strings
	(TD) 3.3 Repeat Parameters Across the Diagram
	(TD) 3.4 Move Parameters to Different Signals
	(TD) 3.5 Adjust Parameter Vertical Placement
	(TD) 3.6 Curved Parameters
	(TD) 3.7 Clock Jitter and Display
	(TD) 3.8 Marker Time Compression
	(TD) 3.9 Marker Snap to Edge
	(TD) 3.10 Marker Loops and Pipelines
	(TD) 3.11 Spacers and Text Font Controls
	(TD) 3.12 Highlight Regions with Text Objects
	(TD) 3.13 Text and Hidden Signals
	(TD) 3.14 Summary of Display and Documentation Tutorial

	Timing Diagram Editor 4: Analog Signals
	(TD) 4.1 Viewing Analog Waveforms
	(TD) 4.2 Faster Drawing with Waveform Equation Blocks
	(TD) 4.3 Writing Python Waveform Equation Blocks
	(TD) 4.4 State Label Equation Alternative
	(TD) 4.5 Drawing a Step Signal
	(TD) 4.6 Generating Sine Waves
	(TD) 4.7 Generating Capacitor Charge and Discharge
	(TD) 4.8 Generating Ramp Waveforms
	(TD) 4.9 Random Analog Equations
	(TD) 4.10 Exporting to SPICE, VHDL, and Verilog
	(TD) 4.11 ADC and DAC Conversion
	(TD) 4.12 Summary of Analog Signals Tutorial

	Timing Diagram Editor 5: Parameter Libraries
	(TD) 5.1 Setup for Library Tutorial
	(TD) 5.2 Add Libraries to the "Library Search List"
	(TD) 5.3 Setup the Library Specifications
	(TD) 5.4 Investigate Preferences Dialog
	(TD) 5.5 Referencing Parameters in Libraries
	(TD) 5.6 Using Macros to Examine Tradeoffs Between Different Libraries
	(TD) 5.7 Parameter Libraries Summary

	Timing Diagram Editor 6: Advanced Modeling and Simulation
	(TD) 6.1 Set up a New Timing Diagram
	(TD) 6.2 Generate the Clock, Draw Waveforms, & Use Waveform Equations
	(TD) 6.3 Modeling State Machines
	(TD) 6.4 Checking for Simulation Errors
	(TD) 6.5 Incremental Simulation
	(TD) 6.6 Modeling Combinational Logic
	(TD) 6.7 Entering Direct HDL Code for Simulated Signals
	(TD) 6.8 Modeling n-bit Gates
	(TD) 6.9 Incorporating Pre-written HDL Models into Waveformer Simuations
	(TD) 6.10 Modeling the Incrementor and Latch Circuit
	(TD) 6.11 Modeling Tri-State Gates
	(TD) 6.12 Debugging External Verilog Models
	(TD) 6.13 Verify the Histogram Circuit
	(TD) 6.14 Controlling the Length of the Simulation
	(TD) 6.15 Editing Verilog Source Files
	(TD) 6.16 Simulating Your Model with Traditional Verilog Simulators
	(TD) 6.17 Summary

	Test Bench Generation 1: VHDL-Verilog Stimulus
	(TBench) 1.1 Load the Tutorial Timing Diagram
	(TBench) 1.2 Hex and Binary State Values
	(TBench) 1.3 Export a Verilog Test Bench
	(TBench) 1.4 Signal Data Types and VHDL user defined types
	(TBench) 1.5. Export a VHDL Test Bench
	(TBench) 1.6 Summary of VHDL-Verilog Stimulus Tutorial

	Test Bench Generation 2: Reactive Test Bench Option
	(TBench) 2.1 Run Program with Reactive Test Bench Option
	(TBench) 2.2 Create a Project to hold the MUT
	(TBench) 2.3 Extract Signal Names and setup the Clock
	(TBench) 2.4 Draw Stimulus Waveforms and Export Test Bench
	(TBench) 2.5 Draw Expected Waveform and Wait for the Assertion
	(TBench) 2.6 Draw a Read Cycle and Verify the read
	(TBench) 2.7 Add a Sample to Verify Data Read from MUT
	(TBench) 2.8 Drive Waveform Values using a File
	(TBench) 2.9 Create For-Loop to Perform Multiple Writes and Reads
	(TBench) 2.10 Alternate Test Bench Designs
	(TBench) 2.11 Summary of Reactive Test Bench Tutorial

	Test Bench Generation 3: TestBencher Pro Basic Tutorial
	(TBench) 3.1 Run TestBencher Pro
	(TBench) 3.2 Create a Project
	(TBench) 3.3 Add the SRAM model to the Project
	(TBench) 3.4 Setup the Template Diagram
	(TBench) 3.5 Create the Write Cycle Transaction Diagram
	(TBench) 3.6 Create the Read Cycle Transaction Diagram
	(TBench) 3.7 Add a Sample to Verify Data
	(TBench) 3.8 Create the Initialize Transaction Diagram
	(TBench) 3.9 Add Transaction Calls to the Sequencer Process
	(TBench) 3.10 Setup the Simulator
	(TBench) 3.11 Generate the Test Bench and Simulate
	(TBench) 3.12 Examine Report Window Results
	(TBench) 3.13 Examine the Stimulus and Results Diagram
	(TBench) 3.14 TestBencher Pro Basic Tutorial Summary

	Test Bench Generation 4: TestBencher Pro with Random Transactions
	(TBench) 4.1 Run TestBencher Pro
	(TBench) 4.2 Setup the VHDL Simulator
	(TBench) 4.3 Load the RandomizedSweepTest Project
	(TBench) 4.4 Weight the Transaction Types
	(TBench) 4.5 Post Random Transaction Types
	(TBench) 4.6 Constrain the Random Data
	(TBench) 4.7 Simulate and View the Results
	(TBench) 4.8 Set the Random Seed
	(TBench) 4.9 Randomize Transactions Summary

	Simulation 1: VeriLogger Basic Verilog Simulation
	(Sim) 1.1 Simulator Choices
	(Sim) 1.2 Add Files to the Project
	(Sim) 1.3 Build the Tree and Investigate the Project
	(Sim) 1.4 Simulate the Project
	(Sim) 1.5 Prepare for Graphical Test Bench Generation
	(Sim) 1.6 Draw Test Bench in Debug Run Mode
	(Sim) 1.7 Simulate in Auto Run Mode
	(Sim) 1.8 Breakpoints, Stepping and Inspecting
	(Sim) 1.9 Archiving Stimulus and Results
	(Sim) 1.10 Saving the Project files
	(Sim) 1.11 Summary of VeriLogger Basic Verilog Simulation

	Simulation 2: Using WaveFormer with ModelSim VHDL
	(Sim) 2.1 Compile SynaptiCAD Library Models
	(Sim) 2.2 Create a project and extract the ports
	(Sim) 2.3 Draw the test bench waveforms
	(Sim) 2.4 Export Waveforms to VHDL
	(Sim) 2.5 Simulate VHDL test bench using ModelSim
	(Sim) 2.6 Compare simulation results against expected results
	(Sim) 2.7 Summary of Using WaveFormer with ModelSim VHDL

	Waveform Comparison Tutorial
	(Compare) 1: Setup for using Compare
	(Compare) 2: Individual Compare Signals
	(Compare) 3: Experiment with Tolerance
	(Compare) 4: Compare Timing Diagrams
	(Compare) 5: Set All Compare Signal Properties
	(Compare) 6: Find the Differences
	(Compare) 7: Perform a Clocked Comparison
	(Compare) 8: Compare During Clock Cycle Windows
	(Compare) 9: Mask Sections to Exclude Comparison
	(Compare) 10: Don't Care Regions
	(Compare) 11: Adjust the Time Difference Between Two Diagrams
	(Compare) 12: Summary of the Comparison Tutorial

	Gigawave and WaveViewer Viewer Tutorial
	(Viewer) 1: Converting a vcd file into a btim file
	(Viewer) 2: Importing a subset of the Waveforms
	(Viewer) 3: Creating a Filter File to selectively load signals
	(Viewer) 4: Show and Hide Signals in the display
	(Viewer) 5: Options: Gigawave, Waveform Comparison,Transaction Tracking
	(Viewer) 6: Waveviewer/GigaWave Viewer Tutorial Summary

	Transaction Tracker Tutorial
	(TT) 1: Open the Example File
	(TT) 2: Match all occurrences of a simple pattern
	(TT) 3: Match Consecutive Occurrences with Concatenation Operator
	(TT) 4: Match with consecutive repetition Operator
	(TT) 5: Match with non-consecutive Repetition Operator
	(TT) 6: Bit-slices and the Boolean operators
	(TT) 7: Implication operator
	(TT) 8: Implication Next-Cycle operator
	(TT) 9: PSL Property
	(TT) 10: Summary of Transaction Tracker Tutorial

