AMBA TestBencher Pro Example

© Copyright 1994-2004 SynaptiCAD, Inc.

Table of Contents

@ =] Yo 2
2.aND MASTEI NP .o 3
2. LWL LI, .. et e et e e aeeaaa 3
2.2.1880. DM ... 4
2.3.001E.LIM. .. e 4
2.4.DUSY. DML ..ot e 4
.M N e 5
3.1.Sequencer Process (Component Model).........covvvviiiiiiiiiiiiiiiiii e 5

3.2.How “ApplyRandom” Works.
I B 1 (oY o] o) VA 1= TR
3.2.2.The “ApplyRandom” Tasks.

1.0verview

This example demonstrates how to create and use an AMEBBAmaster and is
packaged with TestBencher Pro in under the <INSTALL>\Exasngirectory. There is
no model under test which means there is no slaveal&yviespond to the master. This
will cause errors during the simulation which areoallput by the master BFM. There
are two TestBencher Pro projects contained in thimpla amba.hpj and
ahb_master.hpj. The ahb_master transactors caipdienpd and make extensive use of
“Pipeline Boundary” markers to do so. So, you may wantad tkerough the Pipeline
example's documentation for more details on how “Pip&mendary” markers work.
Some of the notable features used in this example are:

1. “Pipeline Boundary” Markers — all master transactors — tsewbdel the pipeline
behavior defined by the AMBA specification.

2. Blocking Samples — master write and read — used tdavdtREADY .

3. State Variables — all master transactors.

4. Loop Markers — master idle and busy transactors — usesktt variable number of
idle or busy cycles.

5. “Store Sampled Value As Subroutine Output” - masterevirégnsactor — used to pass
the read data back to the sequencer process.

6. User-defined Class Method — used on AMBA.hpj componewtetto determine burst
length based on a given burst code (defined by AMBA spec.).

7. Constrained randomization — idle and busy transactoepafed using the “random”
versions of their apply calls which results in a randwmmber of idle or busy cycles.

2.ahb_master.hpj

The master BFM contains four transactors: write, riedel, and busy. Each of these
transactors were created so that they would handlgipleéning behavior of the AMBA
bus protocol. Basically, only one diagram can be executegdtress phase at any
given time. And the same goes for the data phase.aRl#ta phase can occur while an
address phase is occurring. “Pipeline Boundary” Markersised to handle this. With
these types of markers, you define the pipeline phasés wiagram. Then, when the
transactor is applied multiple times, concurrergipelining will occur based on the
pipeline phases you have defined. Also, each pipeline phassociated with a
semaphore name, which will get automatically defined/ém. These semaphores are
global to all of the diagrams within a given projeat.the master project, there are two
semaphores used: addr_phase and data_phase. All of therdiage@the addr_phase
semaphore, but only the read and write diagrams use thepthaise semaphore. This
should be more obvious as you examine each diagram.

2.1.write.btim

This address starts with the address phase followed loatagohase. If another
transactor in the master project is already in thadai of an address phase when this
transactor starts, then it will wait for that addrpkase to finish. This is all handled by
the “Pipeline Boundary” Markers. Here is the sequeri@vents that occur for this
transactor:

1. addr_phase Marker: Wait for address phase to finishri¢ iee@ne in progress. This is
done by waiting for the addr_phase semaphore to be gthate®. Then, it will
decrement the semaphore and continue with the address edefault,
semaphores start out with a value of 1.

2. Execute the address phase.

a) Drive HTRANS to $$trans (state variable passed in aser).
b) Drive HADDR to $$addr.

c) Drive HWRITE high to indicate that this transactisraiwrite.

d) Drive HSIZE to $$size.

e) Drive HBURST to $$burst.

3. data_phase Marker: Increment the addr_phase semaphoreitiad the data_phase
semaphore to be greater than 0. Zero indicates thateatichsactor is still in the
middle of the data phase. When it becomes > 0, decremdrdontinue with the data
phase.

4. Execute the data phase.

a) Drive HTRANS to IDLE.
b) Drive HWDATA to $$data.

5. WaitForSlaveReady Sample: This sample has a “Migltipbf 100, “Full Expect” is
disabled, and “Blocking” is enabled. This configuration walse this sample to
block the diagram from executing, up to 100 clock cycles| HREADY is asserted.
If HREADY doesn't assert within that amount of tira@, error message will be
displayed. In this example, there is no slave BFMramdlave MUT, so yowill see
this error during simulation since there is no slaveegpond.

6. end_phase Marker: Increment the data_phase semaphusandicates that the
data_phase is complete and will allow another transseioerform its own data phase
if it was waiting.

2.2.read.btim

This transactor is very similar to the write transa¢see details above). The difference
is that $$data is no longer passed in as an argumentadnshe SampleData Sample
will read the data driven by the slave and return it asugisub parameter. Notice that the
same semaphore names are used with the “Pipeline Boumdarl&rs. This is very
important. Otherwise, if you applied a read and a vimitgarallel they'd both execute the
address phase and data phases at the same time.

2.3.idle.btim

This transactor simply drives 00, indicating IDLE, on HT¥R3\for a specified number of
cycles. The number of cycles is passed in as an arguag apply call. This input
variable is defined in the “Variables” dialog for the diagraNote again, that the same
semaphore name is used for the address phase, addr_phase.

2.4.busy.btim

This transactor works very much the same way as theraiisdctor except that it drives
01, indicating BUSY, on HTRANS. The second differemthat while the bus is
BUSY, the address and control signals must reflechéxé transfer in the burst. So,
these values are all passed in via state variables: $$%dudhite, 3size, $$burst.

3.amba.hpj

This top level project instantiates one master arld talvarious transactors. Again,
there's no slave MUT, but if you have an AMBA AHB slaleyice, you could place it in
this project as the MUT. This project also contaie®ak transactor and a reset
transactor.

3.1.Sequencer Process (Component Model)

Double-click on the Component Model for this project aedrch for “Sequencer
Process”. This is very near the bottom of the fildis process contains a directed
sequence of transactor calls. Here's a summary aif thvb sequencer process does:

1. Start the clock generator.
2. Apply the reset transactor.
3. Perform the following actions 5 times:
a) Perform a random number of IDLE cycles (see neoticgefor how this works).
b) Randomize the data to be written.
c) For the length of the burst
1. Insert a random number of BUSY cycles (see neticsefor how this works).
2. Perform the write.
3. Randomize the data to be written next.
4. Stop the clock generator.

3.2.How “ApplyRandom” Works

Every transactor has a set of apply tasks associatkdt whiat can be used to run the
transaction is various ways. If you're looking atVWegilog example, you can see these
tasks by scrolling through amba.v (Component Model). In {/HBese tasks (actually
procedures in VHDL) are generated to a package in a sepkratermed
<projectname>_tasks.vhd. In both cases, there is gmelyAand “ApplyRandom” tasks.

3.2.1.The “Apply” Tasks

You should already be familiar with the normal “Apptgsks. When you call these, you
must specifyall of the inputs for the transactor.

3.2.2.The “ApplyRandom” Tasks

When you use “ApplyRandom”, you ot have to specify those parameters that are
marked as “random”. Instead they are randomly gerebatged on a set of simple
constraints. By default, all parameters are markedratom. So, if you call
“ApplyRandom” then you don't need to pass in any transaatgtsnents. Note that the
“random” option has no affect on how the normal “Appbsks work. To enable or
disable “random” for a particular argument do the follmyvi

wh e

. Right-click on the Component Model that contains thegactor.

Select “Classes and Variables.”

In the “Class Definitions” tab, select the clasa #tontains the arguments for the

transactor. These classes are named “<transactesN&tarameters” and are

automatically created when you generate the test hdtake TB).

Select the argument name in the “Class Fields” list

. Change the “Random” option by double-clicking the field aelecting what
you want. By default, these are all “rand”. “randedans “cyclic random” and
is not supported in Verilog and VHDL.

. You can setup the constraints for the “rand” field€limking the “Constraints”

button. By default, the constraints will be set up basethe size and type of

the signal (i.e. the full range of the field is thesaint).

	1.Overview
	2.ahb_master.hpj
	2.1.write.btim
	2.2.read.btim
	2.3.idle.btim
	2.4.busy.btim

	3.amba.hpj
	3.1.Sequencer Process (Component Model)
	3.2.How “ApplyRandom” Works
	3.2.1.The “Apply” Tasks
	3.2.2.The “ApplyRandom” Tasks

