
AMBA TestBencher Pro Example
© Copyright 1994-2004 SynaptiCAD, Inc.

Table of Contents
1.Overview...2
2.ahb_master.hpj..3

2.1.write.btim...3
2.2.read.btim..4
2.3.idle.btim...4
2.4.busy.btim...4

3.amba.hpj..5
3.1.Sequencer Process (Component Model)...5
3.2.How “ApplyRandom” Works..5

3.2.1.The “Apply” Tasks...5
3.2.2.The “ApplyRandom” Tasks..5

1.Overview
This example demonstrates how to create and use an AMBA AHB master and is
packaged with TestBencher Pro in under the <INSTALL>\Examples directory. There is
no model under test which means there is no slave device to respond to the master. This
will cause errors during the simulation which are all output by the master BFM. There
are two TestBencher Pro projects contained in this example: amba.hpj and
ahb_master.hpj. The ahb_master transactors can be pipelined and make extensive use of
“Pipeline Boundary” markers to do so. So, you may want to read through the Pipeline
example's documentation for more details on how “Pipeline Boundary” markers work.
Some of the notable features used in this example are:

1. “Pipeline Boundary” Markers – all master transactors – used to model the pipeline
behavior defined by the AMBA specification.

2. Blocking Samples – master write and read – used to wait for HREADY.
3. State Variables – all master transactors.
4. Loop Markers – master idle and busy transactors – used to insert variable number of

idle or busy cycles.
5. “Store Sampled Value As Subroutine Output” - master write transactor – used to pass

the read data back to the sequencer process.
6. User-defined Class Method – used on AMBA.hpj component model to determine burst

length based on a given burst code (defined by AMBA spec.).
7. Constrained randomization – idle and busy transactors are applied using the “random”

versions of their apply calls which results in a random number of idle or busy cycles.

2.ahb_master.hpj
The master BFM contains four transactors: write, read, idle, and busy. Each of these
transactors were created so that they would handle the pipelining behavior of the AMBA
bus protocol. Basically, only one diagram can be executing the address phase at any
given time. And the same goes for the data phase. But, a data phase can occur while an
address phase is occurring. “Pipeline Boundary” Markers are used to handle this. With
these types of markers, you define the pipeline phases in the diagram. Then, when the
transactor is applied multiple times, concurrently, pipelining will occur based on the
pipeline phases you have defined. Also, each pipeline phase is associated with a
semaphore name, which will get automatically defined for you. These semaphores are
global to all of the diagrams within a given project. In the master project, there are two
semaphores used: addr_phase and data_phase. All of the diagrams use the addr_phase
semaphore, but only the read and write diagrams use the data_phase semaphore. This
should be more obvious as you examine each diagram.

2.1.write.btim
This address starts with the address phase followed by the data phase. If another
transactor in the master project is already in the middle of an address phase when this
transactor starts, then it will wait for that address phase to finish. This is all handled by
the “Pipeline Boundary” Markers. Here is the sequence of events that occur for this
transactor:

1. addr_phase Marker: Wait for address phase to finish if there is one in progress. This is
done by waiting for the addr_phase semaphore to be greater than 0. Then, it will
decrement the semaphore and continue with the address phase. By default,
semaphores start out with a value of 1.

2. Execute the address phase.
a) Drive HTRANS to $$trans (state variable passed in as parameter).
b) Drive HADDR to $$addr.
c) Drive HWRITE high to indicate that this transaction is a write.
d) Drive HSIZE to $$size.
e) Drive HBURST to $$burst.

3. data_phase Marker: Increment the addr_phase semaphore and wait for the data_phase
semaphore to be greater than 0. Zero indicates that another transactor is still in the
middle of the data phase. When it becomes > 0, decrement and continue with the data
phase.

4. Execute the data phase.
a) Drive HTRANS to IDLE.
b) Drive HWDATA to $$data.

5. WaitForSlaveReady Sample: This sample has a “Multiplier” of 100, “Full Expect” is
disabled, and “Blocking” is enabled. This configuration will cause this sample to
block the diagram from executing, up to 100 clock cycles, until HREADY is asserted.
If HREADY doesn't assert within that amount of time, an error message will be
displayed. In this example, there is no slave BFM and no slave MUT, so you will see
this error during simulation since there is no slave to respond.

6. end_phase Marker: Increment the data_phase semaphore. This indicates that the
data_phase is complete and will allow another transactor to perform its own data phase
if it was waiting.

2.2.read.btim
This transactor is very similar to the write transactor (see details above). The difference
is that $$data is no longer passed in as an argument. Instead, the SampleData Sample
will read the data driven by the slave and return it as an output parameter. Notice that the
same semaphore names are used with the “Pipeline Boundary” markers. This is very
important. Otherwise, if you applied a read and a write in parallel they'd both execute the
address phase and data phases at the same time.

2.3.idle.btim
This transactor simply drives 00, indicating IDLE, on HTRANS for a specified number of
cycles. The number of cycles is passed in as an argument to the apply call. This input
variable is defined in the “Variables” dialog for the diagram. Note again, that the same
semaphore name is used for the address phase, addr_phase.

2.4.busy.btim
This transactor works very much the same way as the idle transactor except that it drives
01, indicating BUSY, on HTRANS. The second difference is that while the bus is
BUSY, the address and control signals must reflect the next transfer in the burst. So,
these values are all passed in via state variables: $$addr, $$write, $$size, $$burst.

3.amba.hpj
This top level project instantiates one master and calls its various transactors. Again,
there's no slave MUT, but if you have an AMBA AHB slave device, you could place it in
this project as the MUT. This project also contains a clock transactor and a reset
transactor.

3.1.Sequencer Process (Component Model)
Double-click on the Component Model for this project and search for “Sequencer
Process”. This is very near the bottom of the file. This process contains a directed
sequence of transactor calls. Here's a summary of what the sequencer process does:

1. Start the clock generator.
2. Apply the reset transactor.
3. Perform the following actions 5 times:

a) Perform a random number of IDLE cycles (see next section for how this works).
b) Randomize the data to be written.
c) For the length of the burst

1. Insert a random number of BUSY cycles (see next section for how this works).
2. Perform the write.
3. Randomize the data to be written next.

4. Stop the clock generator.

3.2.How “ApplyRandom” Works
Every transactor has a set of apply tasks associated with it that can be used to run the
transaction is various ways. If you're looking at the Verilog example, you can see these
tasks by scrolling through amba.v (Component Model). In VHDL, these tasks (actually
procedures in VHDL) are generated to a package in a separate file named
<projectname>_tasks.vhd. In both cases, there is are “Apply” and “ApplyRandom” tasks.

3.2.1.The “Apply” Tasks
You should already be familiar with the normal “Apply” tasks. When you call these, you
must specify all of the inputs for the transactor.

3.2.2.The “ApplyRandom” Tasks
When you use “ApplyRandom”, you do not have to specify those parameters that are
marked as “random”. Instead they are randomly generated based on a set of simple
constraints. By default, all parameters are marked as random. So, if you call
“ApplyRandom” then you don't need to pass in any transactors arguments. Note that the
“random” option has no affect on how the normal “Apply” tasks work. To enable or
disable “random” for a particular argument do the following:

1. Right-click on the Component Model that contains the transactor.
2. Select “Classes and Variables.”
3. In the “Class Definitions” tab, select the class that contains the arguments for the

transactor. These classes are named “<transactorName>_Parameters” and are
automatically created when you generate the test bench (Make TB).

4. Select the argument name in the “Class Fields” list.
5. Change the “Random” option by double-clicking the field and selecting what

you want. By default, these are all “rand”. “randc” means “cyclic random” and
is not supported in Verilog and VHDL.

6. You can setup the constraints for the “rand” fields by clicking the “Constraints”
button. By default, the constraints will be set up based on the size and type of
the signal (i.e. the full range of the field is the constraint).

	1.Overview
	2.ahb_master.hpj
	2.1.write.btim
	2.2.read.btim
	2.3.idle.btim
	2.4.busy.btim

	3.amba.hpj
	3.1.Sequencer Process (Component Model)
	3.2.How “ApplyRandom” Works
	3.2.1.The “Apply” Tasks
	3.2.2.The “ApplyRandom” Tasks

