
Chip Design • www.chipdesignmag.com April/May 2004 • 25

Easing Today’s Verification Language Bedlam
Creating SystemC and HDL testbenches with SCV

By Donna Mitchell and Dan Notestein
?

?

Writing reusable bus-functional testbench models has always
been a challenge. In the past few years, several verification
languages have been introduced to address that challenge. For
a company like SynaptiCAD Inc. (Blacksburg, VA), which
makes the TestBencher Pro graphical code generator, a diverse
customer base requires that our tool be able to generate the same
model in all verification languages currently in use. We have a lot
of experience pushing each language to its performance limits
and comparing how the languages work.

SCV (SystemC Verification) – a verification library for SystemC
– is one of the newest players in the verification language space.
is article describes some of the benefits we’ve found in using
SCV to develop testbenches, as well some of the pitfalls. First,
however, this caveat: SCV is still under development, so some
features discussed in this paper may not be officially accepted
into the standard yet.

TWO USAGE MODELS
ere are two basic ways to use SCV. e first is to use it in a
pure SystemC environment, where both the testbench and the
design model are written in C++. e other way is to use SCV
as the testbench language, while maintaining the design models
in an HDL language so they can be synthesized. Ultimately, the
goal here is to be able to use the same SCV testbench to test
either a SystemC or an HDL mode with only minor differences
in an interface file. e solution would be portable to different
simulators and simulator combinations.

However, there are some technical limitations with this
approach. Limited bi-directional signal support and proprietary
wrapper classes can make this process more complicated than
it sounds. SCV in a pure SystemC environment overcomes
many of the bus-functional model design difficulties found in
pure VHDL or Verilog environments. But in a mixed SCV and
HDL environment, there are still some technical issues to work
out.

e biggest problem with using SCV with an HDL-based
design is that, without native simulator support, an SCV
model cannot communicate with a bi-directional signal in an
HDL model. Only SCV_INPUT and SCV_OUTPUT are
supported. is is a big limitation, because one of the nice
things about using a C++ bus-functional model is that you can
write simple models that do things that are difficult to achieve

using pure VHDL or Verilog. By mixing C++ testbench models
with HDL design models, you theoretically get the best of both
worlds – industry proven synthesizers for the design and
flexible, high performance bus-functional models with dynamic
memory allocation for the testbench.

Simulators with native support, such as the Incisive simulators
from Cadence Design Systems, Inc (San Jose, CA), work
around this problem by using proprietary wrapper-class
libraries to provide bi-directional communication. e wrapper
classes handle the communication between models in different
languages. All of the code written in either C++ or HDL is
elaborated and executed by the same simulation engine. is
solution works, but it also means that the code is no longer
portable between different simulators. is poses a particular
problem for IP designers, or for those who use graphical code
generators working to produce models that can be used with any
simulator combination.

is lack of bi-directional support is particularly disappointing
in light of SCV’s parentage. e SCV architecture is based on
the older Cadence TestBuilder library. With TestBuilder, you
basically have the same power as SCV, but you have simulator
independence. For pure SystemC design, SCV is certainly a
proper choice. For mixed HDL designs and C++ testbenches,
however, you need to consider the native support of your
simulator and the audience that will be using your models before
making a final decision between the two libraries.

SCV SIMPLIFIES BFM DEVELOPMENT
Most complex testbenches are coded using bus-functional
models (BFMs) that mimic the I/O behavior of a device
without modeling its internal computational abilities. e
BFM-based testbench architecture we use at SynaptiCAD is in
that category. (see Figure 1)

Figure 1: e SynaptiCAD bus-functional model architecture

26 • April/May 2004 Chip Design • www.chipdesignmag.com Chip Design • www.chipdesignmag.com April/May 2004 • 27

?
?

e Transaction Manager controls a queue of transactors
that can be applied to the model under test. e Transaction
Generator uses the constrained random data generation features
in SCV to determine which transactions to execute (for example,
a microprocessor’s read or write cycle), and which parameter
values to use for the transaction (for example, the address and
data values for a write cycle). e Transaction Monitor records
which transactions are executed, including any transaction
outputs generated by the model under test, and also employs
the SCV data coverage features to ensure that the testbench will
provide adequate functional coverage.

To maximize simulation performance, the transactors
themselves should generally be modeled in the language of
the design, since there is typically a performance penalty for
simulation activity that occurs across simulation languages. But
if you’re using a mixed-language, single-kernel simulator, you
can often work across language boundaries without incurring a
significant penalty.

In any event, the Transaction Manager should be coded in a
language that supports data structures and dynamic memory
allocation and SCV C++ is a perfect choice. ere is very
little speed penalty for coding the testbench in this manner
because the Transaction Manager makes simple function calls
to the native language transactors. ese function calls happen
relatively infrequently, compared to the amount of activity that
occurs during the execution of the transaction.

RANDOMIZED AND SIMPLIFIED
Another useful capability, added recently to SystemC version
2.1, is the ability to dynamically create processes and perform
both standard fork-join type operations and fork-join-none
operations. (see Figure 2)

Traditional fork-joins, like those available in Verilog, cause the
spawning process/thread to wait until all the spawned processes
are completed. Alternatively, fork-join-none operations allow

multiple processes to be spawned off simultaneously, without
causing the spawning process to wait for the spawned processes
to complete. e fork-join-none capability is also available in
several other verification languages, including OpenVera and e.

In a bus-functional model, fork-join-none can be used to enable
multiple randomly generated transactions to be executed.
Without this feature, randomized non-blocking transaction
sequences require the addition of a complex set of handshaking
signals. ose signals trigger the transactions without waiting
for them to finish, which unnecessarily complicates the
testbench architecture.

Frequently, it’s necessary in developing testbenches for packet-
based switched-networks such as an ATM switch, to initiate
transactors connected to one part of the testbench hierarchy
from another. Similarly, hierarchical transaction calls can be used
in the design of a PCI bus-functional model in which the PCI
Master and PCI Slave models are components of a parent PCI
model. e PCI model triggers the PCI Master transactions
and collects the results from of PCI Slave transactions. is is a
difficult task in VHDL, because there is no native support in the
language for hierarchical referencing of signals or tasks, and also
because of problems that occur when signals need to be driven
by multiple processes.

Verilog, however, makes it relatively simple to call transactors in
other parts of the design hierarchy. Verilog doesn’t suffer from
the multiple driver problems associated with VHDL, although
it does lack of support for dynamic memory allocation. at
lack makes it almost impossible to support important testbench
capabilities such as enqueing of transactions with randomly
generated parameters for execution later in the testbench.

SCV is able to address the problems inherent in Verilog and
VHDL. SCV makes it relatively simple to create a flexible
architecture for transaction-based testbenches, as it supports
dynamic memory allocation and has no multiple driver
problems.

COVERAGE WITH CONSTRAINED RANDOMIZATION
Using a mix of directed and randomized test values has become
a popular technique when testing large systems. It’s fairly
impossible these days to test all possible input cases for more
than the simplest designs. e randomized data is constrained
to a subset of “likely” inputs that enable reasonable coverage
of system functionality. SCV offers a robust set of classes for
generating constrained random data to meet this need.

For instance, SCV provides a class, scv_random that can be
Figure 2 : SCV supports fork-join-none, allowing creation of sequences of
randomized non-blocking transactions.

26 • April/May 2004 Chip Design • www.chipdesignmag.com Chip Design • www.chipdesignmag.com April/May 2004 • 27

?
?

used to generate an independent stream of random integers.
Typically, this class isn’t used directly. Instead, you use a template
class called scv_smart_ptr, which contains internal scv_random
instantiations. To perform basic randomization, you just create a
scv_smart_ptr and pass the class you’re wanting to randomize as
a template parameter. is allows you to call the “next” method
to generate a random value.

SCV also supports a form of introspection on SCV data
objects. Introspection is a relatively new concept in computer
science. e strategy allows a program to gain knowledge of the
properties of an initially unknown data object. An algorithm,
for instance, could use introspection to determine the name and
data types of data members in an object. Using introspection,
the scv_smart_ptr can perform automatic randomization on the
fields of a user-defined class without requiring the user to write
custom code for his class.

For more complicated randomization needs, users can create
a class that derives from the scv_contraint_base class. e
derived class is used to specify soft and hard constraints, so that
the randomly generated numbers represent legal values based
on specific design criteria. Hard constraints have to be met; if
the random generator cannot meet them, a runtime error will
be generated. e constraint engine will also attempt to satisfy
soft constraints. However, if these can’t be met due to hard
constraints, the soft constraints will be ignored.

In addition to placing basic constraints on data values, it’s
also possible to generate weighted random numbers using the
scv_bag class. Using this class, the user the ability to flexibly
control the probability distribution of the random numbers
being generated.

SUMMARY
As designs become significantly more complicated, it is
increasingly difficult to develop adequate testbenches using
standard VHDL and Verilog language constructs. SCV is the
latest language to address the insufficiency in HDL languages
by offering capabilities such as dynamic processes, dynamic
memory allocation, object oriented programming model, and
built-in libraries for constrained random data generation.

SCV is the perfect choice for anyone using a design methodology
that incorporates SystemC at some stage in the design, since the
testbenches developed during the SystemC phase can be reused
again during the HDL design stage. It is also a good candidate
for developing testbenches for strictly HDL-based designs as
it offers many advanced testbench capabilities not available in
Verilog and VHDL.

Another benefit not to be overlooked – SCV is a C++
based language. As a result, there is a large body of existing
C++ libraries that can be incorporated into your testbench
development. It’s also easier, therefore, to test systems whose
functionality is partitioned between both the hardware and the
software components.

One final point – SCV an attractive choice as a verification
language even from a cost consideration. Like SystemC itself,
SCV is a free open-source library and C++ development tools
are extremely cheap, especially when compared to standard
EDA tools in the market today.

Donna Mitchell is a co-founder and VP of marketing of
SynaptiCAD. Mitchell received her BS and MS degrees in
electrical engineering from Virginia Tech. As one of the founders
of SynaptiCAD, she assisted in the design and development of
SynaptiCAD’s first products, Timing Diagrammer, WaveFormer
Pro and TestBencher Pro.

Daniel Notestein, is the President of SynaptiCAD and the
chief software architect for SynaptiCAD’s TestBencher Pro and
VeriLogger Pro products. Notestein obtained his bachelor’s degree
in electrical engineering and minors in computer science and math
from Virginia Tech and his MSEE from the University of Texas.

