
Feature

Generally when a design is started, a designer
is given high-level timing requirements that
must be met by his design. Examples of high-
level timing requirements include computa-
tional throughput (millions of instructions per
second), data transmission rates (megabytes
per second), and response latencies to
requests from external systems. A designer
takes these times and converts them into cycle
times (for example, 10 MIPS = 100 ns per
instruction). These cycle times serve as “tim-
ing budgets” for the designer, and he must
work within these constraints during the
design of his system. As the design is broken
down into smaller and smaller subsystems,
the cycle times are subdivided and assigned to
each subsystem. The process of moving
through each successive level of timing is
called “top-down timing design.”
How does top-down timing design differ
from back-end timing analysis? The key
feature of a top-down timing design method-
ology is an up-front analysis of system timing
(usually using timing diagrams) right at the
beginning of the design cycle, where errors
can be quickly corrected. Back-end timing
analyzers such as digital simulators and static
timing analyzers require the designer to have
already committed to a specific circuit imple-
mentation, which is usually specified as a
schematic or HDL netlist with associated sim-
ulation models. This requirement for a nearly
completed design prior to beginning timing
analysis means that any timing errors discov-
ered during a back-end analysis may result in
a significant redesign effort. In addition,

when timing or logic errors are found at this
stage, any circuit changes must be reflected
in many different places: the schematic,
model descriptions, testbench stimulus for
the simulator or timing analyzer, and docu-
mentation accompanying the design. Top-
down timing design helps the designer dis-
cover timing errors earlier in the design cycle,
resulting in fewer changes and faster product
development.

Back-end timing analyzers are most useful
as design sign-off validators, rather than as
design aids. It is difficult to use a back-end
timing analyzer to maximize design speed
because most of the design decisions have
been made by the time a back-end timing
analysis begins. Examination of significantly
different design choices is not possible
because each design alternative requires too
much front-end design time before its perfor-
mance can be analyzed. Front-end timing ana-
lyzers, such as WaveFormer Pro by
SynaptiCAD Inc. (Blacksburg, VA), excel at
timing optimization because comparatively lit-
tle design information needs to be entered in
order to analyze system performance.

Front-end timing analyzers don’t invalidate
the use of back-end timing analyzers. While
front-end timing analyzers are quicker and
require less design entry, back-end timing
analyzers benefit from having complete
design information and generally perform a
more exhaustive, brute-force analysis of a
design’s performance that can detect errors
that a designer may have missed during a
front-end timing analysis. In fact, one of the
biggest challenges of using a back-end timing
analyzer is sifting through the data generated
by the analysis to discover real timing errors.
Designers, nevertheless, will benefit from the
combination of both front-end and back-end

Upfront timing analysis reduces timing
errors and leads to thoroughly optimized
designs.

by
Bryan
Hoyer &
Donna
Mitchell

Design Automation
For more on Design Automation go to:
http://www.isdmag.com

Top-Down Timing Design

32 July 1997 integrated system design

Reprinted with permission of Integrated System Design, July, 1997

Design Automation

timing analysis tools to achieve the highest
level of confidence in the timing of a design.
Benefits of timing-diagram analysis
Designers have traditionally used hand-
drawn timing diagrams to perform their initial
timing analysis. Timing diagrams offer the
advantage of enabling the designer to see the
effects of timing constraints on a system’s
signals. With a timing diagram, the cause-
and-effect relationships between signal tran-
sitions are shown by timing parameters such
as delays, setups, and holds, providing the
designer with more insight into the operation
of a system. This is particularly helpful
because timing errors are found early in the

design cycle. Also, critical paths that cause
errors can be analyzed visually by following
delay chains back through the diagram. Each
delay in a critical path indicates a point at
which a circuit change could alleviate a tim-
ing error or increase system performance.

Timing-diagram analysis also gives you the
advantage of being able to account for
min/max delay tolerances at the same time.
This is critical for asynchronous designs such
as bus transaction protocols because most
simulators can only simulate at the extreme
timing end points, but not over the entire
operational range of the design.

Many designs are never given a thorough
timing-diagram analysis, despite the benefits,
because of the amount of time required to
perform such an analysis manually. Drawing
timing diagrams by hand is a difficult and
error-prone task, and the resulting diagrams
are generally messy and hard to understand
and analyze. The messiness is compounded
when timing errors are discovered and fixed,
causing the hand-drawn timing diagrams to
be erased and re-drawn. In addition, the tim-
ing analysis of manually generated timing dia-
grams is usually overly pessimistic because it
is difficult to find and remove common delays
from setup and hold calculations.

Timing-diagram editors eliminate the need
to manually generate timing diagrams. They
allow the designer to easily create and change
timing diagrams, and they reduce the chance
for error in timing calculations. Timing dia-
grams can be created with a combination of
point-and-click drawing, Boolean and temporal
equations, and auto-generated clocks and
buses. Designers can analyze system perfor-
mance using just the timing parameter infor-
mation available in data books without the
need for schematic netlists and complex simu-
lation models. Timing calculations are per-
formed interactively, so it is easy to quickly
assess the impact of a change in a timing para-
meter by updating the parameter’s value or
switching to a different part library.

Timing diagram editors can provide several
types of timing and logic analysis:

• Automatic calculation of critical paths and
constraint checking (setup and hold margins).

• Common delay removal.
• Delay correlation calculations.
• Combinatorial logic analysis using Boolean

equations.
• Temporal equations for DSP analysis.
• Reuse of timing during simulation.

Calculation of critical paths and constraint
checking Timing calculations in a timing dia-
gram analyzer are performed using true
min/max timing, and calculations are auto-
matically adjusted to account for subtle tim-
ing effects such as reconvergent fanout. With
timing-diagram editor output, it is easier to
see timing relationships between signal tran-
sitions than with a simulator because the tim-
ing parameters (propagation delays, setup
times, and hold times) graphically specify
cause-and-effect relationships between signal
transitions and timing constraints that must
be met by the system. This is one reason why
engineers who have access to powerful simu-
lators still draw timing diagrams by hand.
Timing-diagram editors also allow designers
to verify min/max timing simultaneously so
that the overall impact of IC-timing tolerances
on a system’s performance can be properly
assessed.

34 July 1997 integrated system design

Figure 1. Timing diagram used for top-down timing design. The
screen capture of WaveFormer Pro shows margin calculations
and delay parameters.

Design Automation

Reconvergent fanout Margin calculations in
some circuits can be overly pessimistic if all
the uncertainty times in a timing path are
included in the calculations. For instance, if
two signal transitions, B1 and B2, are caused
by the same transition, A (see Figure 2), then
margin calculations between B1 and B2
should not include the uncertainty of transi-
tion A, because no matter when A transitions,
it will occur at the same time for both B1 and
B2. When this happens, the circuit is said to
have “reconvergent fanout” because this typi-
cally occurs when two signals diverge
(fanout) from a common source and recon-
verge at the inputs of a gate. The adjustment
of timing calculations to account for reconver-
gent fanout is referred to as “common delay
removal” because the uncertainty created by
delays common to both timing paths is
removed. The ability to recognize and remove
the pessimistic effects of recon-
vergent fanout is especially
important for circuits that have
demanding timing requirements.
Performing common delay
removal on manually drawn tim-
ing diagrams is tedious and error-
prone, but ignoring this effect can
lead to sub-optimal designs.
Delay correlation Another
effect that is rarely accounted for
in digital designs that can lead to
overly pessimistic margin calcula-
tions is delay correlation. Delay
correlation allows the designer to
specify that the degree of varia-
tion in gate delays on a single
chip is smaller than the variation
of gate delays across multiple
chips. This lower variation in on-
chip delays makes it possible for
designs to meet setup and hold-

time requirements that could not be met
using just the min/max delay values.

Delay correlation is expressed as a percent-
age value. By default, delays are considered
uncorrelated (delay correlation = 0 percent).
One hundred percent delay correlation among
a group of gates would mean that all the
gates are guaranteed to have exactly the
same propagation delay time. Note that this
delay time could be anywhere between the
min and max time of the delay parameter, but
whatever the value, it would be the same of
all the gates. For example, two gates with a
min/max delay equaling 5 to 15 ns and a cor-
relation of 90 percent could have delay values
anywhere in the range of 5 to 15 ns, but the
delays of the gates are guaranteed to be with-
in 1 ns ((15 ns 2 5 ns) 3 90% = 1 ns) of each
other.

36 July 1997 integrated system design

Figure 2. Reconvergent fanout example. Reconvergent fanout adjustment removes
common delays from calculation margin and distance values.

Figure 3. Interactive Boolean simulator example. Interactive
Boolean simulation aids in top-down timing analysis

Design Automation

Process and temperature variations across
ICs account for the increased variation in
across-chip gate delays. IC manufacturers do
not generally publish delay correlation values
for most standard TTL and CMOS parts, but
they do publish delay correlation values for
clock-buffer ICs (it is more important to have
correlation between clock delays than to match
absolute delay for clock trees, because uncorre-
lated delays increase clock skew). Clock-buffer
delay correlation is usually specified indirectly
as a min/max delay and an on-chip delay varia-
tion often called skew. For example, a clock
buffer with a delay equaling 5 to 10 ns and an
on-chip skew equaling 1 ns has a delay correla-
tion of 80 percent (1 2 (1 ns / (10 ns 2 5 ns)) 3
100) = 80 percent).

Designers using ASICs and FPGAs will ben-
efit the most from taking advantage of delay
correlation in their designs, since most of the
delays in these designs are correlated. If your
gate array or FPGA manufacturer doesn’t
publish this information in their data books,
you should ask your manufacturer directly—
they probably have the information available
internally. The primary reason delay correla-
tion information hasn’t been published much
in the past has been the lack of EDA tools
that can take advantage of it.

Correlation factors in WaveFormer Pro are
specified by first creating a correlation group
name and assigning it a correlation percent-
age. Next, all the correlated delays (all the
delays on the chip) are added to the correla-
tion group. For gate array designers,
WaveFormer Pro supports a default correla-
tion group that applies to all delays in a
design. After delay correlations are specified,
WaveFormer Pro automatically adjusts all tim-
ing margins in a design.
Combinatorial logic analysis Early in the
top-down design cycle, after the original tim-
ing interface has been analyzed, different
parts of the circuit will start to take shape.
WaveFormer Pro helps you in this phase by
supporting interactive Boolean simulation
(see Figure 3). Designers can enter Boolean
equations that describe their design and
immediately assess the impact of modifying
logic, state, and timing information without
having to change a schematic or create simu-
lation models. The Boolean simulator includes
support for propagation and interconnect
delays, allowing any combinatorial logic to be
modeled. Below is an example of a Boolean
equation that models an AND gate with an
input delay of 20 ns on one input and 10 ns on
the other input:

SIG3 = (SIG0 delay 20 ns) and
(SIG1 delay 10 ns)

Temporal equations for describing DSP
waveforms Many waveforms are difficult to
draw and work with because of the precise
edge placement necessary to convey circuit
information. For instance, a waveform that
alternates between a frequency of 25 MHz
and 50 MHz for 10 cycles would be very
tedious to attempt to draw by hand. These
types of waveforms can be described in
WaveFormer Pro using temporal equations.
The waveform described above could be gen-
erated using the following temporal equation:

CK25_50 [(20 = H 20 = L) x
20 (10 = H 10 = L) x 20] x 10

Bryan Hoyer is president of Boulder Creek
Engineering (Saratoga, CA).

Donna Mitchell is vice president of marketing
for SynaptiCAD Inc. (Blacksburg, VA).

To voice an opinion on this or any Integrated
System Design article, please email your mes-
sage to miker@asic.com.

Visit ISD on the web: http://www.isdmag.com

38 July 1997 integrated system design

