@B ww.ecnmag.com ECN « November 15, 2001

Edited by
Colleen Purtell-Tappen
Technical Editor

Finally, a Verification GUI!

by Donna Mitchell,
SynaptiCAD, Inc.

erification design complexity will force
Vmany of you to reconsider your current

methods of creating test benches. But
the available choices are difficult to evaluate.
Will you stick with a modeling language like
VHDL, Verilog, or SystemC? Or will you switch
to one of the new verification languages such as
OpenVera or the “e” language? Whatever choice
you make, you are still faced with the problem
of developing complex test benches, and main-
taining that code over the course of several pro-
jects and possibly several verification engi-
neers. Graphical code generation offers a lan-
guage independent solution to test bench devel-
opment that enables engineers to quickly
describe test benches in a manner that is clear
and precise.

Advanced Modeling

Graphical test bench generation is the pro-
cess of automatically creating test bench source
code from an interface description based on
graphical timing diagrams. SynaptiCAD has
developed TestBencher Pro, a simple and intu-
itive graphical test bench generator that can be
used to model very advanced bus transactions
and interface descriptions. Pipelining, split-
phase transactions, data structures and memo-
ries, and sequence recognition can all be mod-
eled. TestBencher uses timing diagrams to
generate bus transactor source code in the

p1iBar iy Tam Basver B Terans ' LRARRE :-

IO IOl L b LT

T BT

i T wtearw (i

Figure 1: Complex Data Structure using Constrained Random Data

user’s preferred verification language. By using
timing diagrams, the engineer can work at a
higher level of abstraction, free from the coding
details that arise solely from the choice of a
particular verification language.

Race Conditions

Test benches are frequently plagued by con-
currency and synchronization issues that result
in race conditions and non-deterministic execu-
tion. Race conditions are caused by subtle
design choices that cannot be automatically
found in the same way that syntactical errors
are. Race conditions only manifest at run time,
and often they are not even detectable at run
time because the race conditions may “go the
right way” on a particular simulator, only to fail
when run on another simulator which made a
different decision on the order in which to exe-
cute the theoretically parallel operations.

Using a graphical code generator, circum-
stances that can cause race conditions are han-
dled automatically. For example, race conditions
are common in clocked functional test benches
where signals are frequently driven and sam-

pled at the same
clock edge, but on

different zero-time
delta cycles. Below is
a code fragment that
shows a simplified
example of one way

these races can

occur. When hand

coding, the engineer | v
must be sure to write

the code in such a

way that the sam-
pling occurs as the
first thing that hap-
pens during each clock cycle. This is not an
easy task in hardware description languages
where signals frequently change state several
times during a single clock cycle. However, the
concurrent events that cause these race condi-
tions are visually obvious in a timing diagram,
leading to the easy avoidance of these types of
race conditions.
Driving Process:
always @ (clock)
data ='h42;
Monitoring Process:
always @ (clock)
if (data == 'h42)
$display(data);

Constrained Random Data

During the implementation of a hand-coded
test bench it is very easy to mismatch port
sizes or make other similar small errors.
Automatic code generation from graphical
descriptions makes it easier for an engineer to
define the information in one location and use
it throughout the test bench. This is especially
true for creating and maintaining complex data
structures that are used to supply or store state
information for different transactions. A small
change to a data structure often causes code
changes in many different locations in the test
bench. With a graphical interface, once a data
structure has been defined for a project,
changes to that data structure are automatical-
ly propagated throughout the test bench.

The newer verification languages also sup-
port advanced data structure features such as
constrained randomization of test stimulus dur-
ing a simulation. With a graphical interface it
is very easy to experiment with different ran-
domization options because data structure
changes are made in only one location. The
example in Figure 1 shows the definition for a
data structure that will provide constrained
randomized data to a transaction. The fields
specified for a data structure can be elements,
arrays, or queues. Each field can have different
properties defined, depending on the test bench
language and the data type being used. These
data structures also allow data to be read from
or written to a file using a spreadsheet format
and can store data internally in memory.

Pipelined Transactions

Another challenge in verification of designs
is the implementation of pipelined bus transac-
tions. To speed up the bus, pipelined transac-
tions begin to execute before the end of the pre-
vious transaction. This parallel activity makes it
more difficult to visualize what the test bench is

Figure 2: AMBA pipelined bus master driven by queue data structure

doing. Figure 2 shows how a single timing dia-
gram can be used to model both the read and
write transactions of an AMBA (Advanced
High-Performance Bus) master device.

Test Bench Maintenance

Test bench code is often difficult to under-
stand even when written using modular pro-
gramming techniques because of the large
amount of parallel activity occurring in the test
bench. Timing diagrams allow a much clearer
and concise description of the interaction of
parallel processes and signal activity. A graphi-
cal representation also facilitates the collabora-
tion of many engineers on a single test bench
by removing the need to interpret source code.
Any engineer familiar with the design specifi-
cations is able to look at a given timing dia-
gram and have an immediate understanding of
what the transactor does, dramatically simpli-
fying test bench maintenance.

Summary

Graphical automatic test bench generation
provides a good solution to many of the prob-
lems faced during functional design verifica-
tion. In this solution, timing diagrams are used
to describe bus transactions in the test bench.
Engineers are familiar with timing diagrams,
so they are easily understood and the graphical
representation enables the engineer to quickly
visualize the test bench at a higher level of
abstraction. The transactions depicted in the
timing diagrams form modular components of a
test bench that can quickly be modified and re-
used in other designs, paving the way for faster
verification of future designs.

Donna Mitchell is Vice President of Strategic
Marketing at SynaptiCAD, Inc. She received
her BS and MS degrees in electrical engi-
neering from Virginia Tech. Mitchell is one
of the two founders of SynaptiCAD Inc. She
can be reached via email at
donna@syncad.com. SynaptiCAD Inc. is
located at 520 Prices Fork Rd. #C4,
Blacksburg, VA 24060, (540) 953-3390; Fax:
(540) 953-3078; www.syncad.com

Write in xxx or www.ecnmag.com/info

EDITORIAL EVALUATION

Write in Number or Reply Online
| found this article:

Very Useful Useful Not Useful
XXX XXX XX

