
Pipelining TestBencher Pro Example
© Copyright 1994-2004 SynaptiCAD, Inc.

Table of Contents
1.The Pipelining Example..2
2.Pipeline Boundary Markers...3

2.1.Creating Pipeline Boundary Markers..3
2.2.How Pipeline Boundary Markers Work..3

2.2.1.Multiple instantiations of a single diagram...3
2.2.2.Semaphores..4

3.Verilog Specific Details...5

1.The Pipelining Example
The purpose of the Pipelining example is to demonstrate how pipelined transactors can be
created and how they work. There is no model under test used in this example. Instead a
simple protocol was invented just to allow the demonstration of "Pipeline Boundary"
markers. The address, control, and data signals are driven in three successive clock
cycles. There are three diagrams in the Pipelining project:

1. CLK_generator – drives the clock signal.
2. read – performs a three cycle read. Since there isn't a MUT, the data bus will

actually be tri-stated during the data phase.
3. write – performs a three cycle write.

The read and write diagrams are very similar. There are two differences:
1. The "WRITE" signal is asserted in the write diagram and de-asserted in the read

diagram.
2. The "DATA" signal is specified to be driven in the write diagram, but not in the

read diagram. This is set via the “Driven” check box in the “Edit Bus State”
dialog (double-click on state to open).

To create the pipeline phases, "Pipeline Boundary" Markers were placed on each clock
edge that starts and/or ends a pipeline phase. For each "Pipeline Boundary" Marker that
starts a phase, a semaphore name is specified. This is done in the “Edit Marker” dialog
and can be any valid identifier. To indicate the end of the last pipeline phase, you can
either select “End Boundary” as the semaphore name or create an “End Diagram” marker
instead. There are three phases in each of the diagrams: addr, control, and data. This
allows for the following simulation results:

CLK1 CLK2 CLK3 CLK4 CLK5

addr1 control1 Data1

addr2 control2 data2

addr3 control3 data3

Apply-nowait diagram calls are also necessary to get these results. For example, to
perform 3 pipelined writes, you'd have the following task calls in your sequencer process:

Apply_write_nowait(addr1, data1);
Apply_write_nowait(addr2, data2);
Apply_write_nowait(addr3, data3);

Note that the final apply call does not need to be a "nowait" call. In fact, if it's the last
apply call in your sequencer process you should probably use the "blocking" call,
Apply_write, so that the sequencer is blocked from finishing until the last write
completes.

2.Pipeline Boundary Markers
Details on how diagrams operate in general can be found in the TestBench Generation
Help in section 3.5 "Transaction Architecture". Here, we'll describe specifically how to
create "Pipeline Boundary" Markers and how they work.

2.1.Creating Pipeline Boundary Markers
Here are the steps required to create a “Pipeline Boundary” marker.

1. If you want the boundary to be at a clock edge, select (left-click) the clock edge.
2. Right-click to place the marker.
3. Double-click the marker or the marker's name to bring up the “Edit Time Marker”

dialog.
4. For Type, select “Pipeline Boundary.”
5. Under “Semaphore for next phase”, select the semaphore name from the drop down

list. (Note: Select “End Boundary” if you are ending a pipeline phase but not
starting a new one.) If there are no semaphore's created yet, you can do either of the
following:
a) Type in a new semaphore name and it will be created for you automatically.
b) Select <Edit> from the drop down which will bring up the “Semaphore List”

dialog. This is where you edit the semaphores for a given project. Once you've
created the semaphore, you can close the “Semaphore List” dialog and the new
semaphore should be available in the drop down.

After creating two “Pipeline Boundary” markers in the diagram to define a phase, a line
with an arrow on each end will be drawn between the two markers. The name of the
semaphore used will be displayed above this line.

Note: like looping markers, “Pipeline Boundary” markers must begin and end on the
same type of edge to define a pipeline phase. Otherwise, they would be in different clock
domains. For more details on clock domains see section 3.5 “Transaction Architecture”
in the TestBencher help.

2.2.How Pipeline Boundary Markers Work
The following two sections describe the two features that go into making pipelined
transactors work.

2.2.1.Multiple instantiations of a single diagram
This is what allows the diagram to run multiple times in parallel. The diagram is
automatically instantiated once per pipeline phase, so you don't need to worry about this
detail when using "Pipeline Boundary" markers. If you're interested in setting the
instantiation number manually, you can do so by setting the “Instance Count” in the
Diagram Settings dialog.

2.2.2.Semaphores
These are used to block regions of the diagram from running at the same time. By
default, semaphores will be initialized to 1. Semaphores are incremented and
decremented like integers. When a semaphore is > 0 then it is considered “available”.

In this example there can only be one addr phase running at a time. When the write is
applied, it will decrement the addr semaphore count and enter the addr phase. When it
leaves the addr phase, it will increment addr back to 1. In the meantime, if any other
diagram tries to grab the addr semaphore, it will wait until the addr semaphore's count is
incremented.

Note: The semaphores that are used in TestBencher are queue based. So, the order is
maintained for all the waiters of a given semaphore.

There are "Semaphore" markers that can be used to wait on or post a specific semaphore.
So, you could use "Semaphore" markers to implement a pipelined transactor. But,
"Pipeline Boundary" markers reduce the amount of markers that are necessary and avoid
the overall complexity of the diagram. The following table compares the two methods.

Using Semaphore Markers Using Pipeline Boundary Markers

Semaphore (Wait) : addr Pipeline Boundary : addr

perform addr cycle

Semaphore (Wait) : control

Semaphore (Post) : addr
Pipeline Boundary : control

perform control cycle

Semaphore (Wait) : data

Semaphore (Post) : control
Pipeline Boundary : data

perform data cycle

Semaphore (Post) : data Pipeline Boundary : End Boundary

Note how the wait for the next semaphore must happen before the post of the previous
semaphore. This is to make sure that the transactor stays in a particular phase. If it
posted the semaphore before waiting for the next one, then it could end up being in
neither phase. This detail is automated when using Pipeline Boundary markers.

For each semaphore needed a tbfifosemaphore module is instantiated in the component
model. That allows the semaphore to be shared between different diagrams in the same
project. Currently, there is no way to share one semaphore across multiple projects.

3.Verilog Specific Details
The definition of the tbfifosemaphore module can be found in definition found in
lib\verilog\tbfifosemaphore.v. This module's purpose is to preserve the order in which
diagrams are waiting for a given semaphore. Here is an example of what is generated for
a "Wait Semaphore":

 // Wait for Semaphore: pipelining.pipeline_phase_control
 tb_pid = pipelining.pipeline_phase_control.GetPidIfNecessary(0);
 if (tb_pid != 0)
 begin
 while(pipelining.pipeline_phase_control.resume_pid != tb_pid)
 begin
 @(pipelining.pipeline_phase_control.resume_pid);
 end
 end
 pipelining.pipeline_phase_control.WaitComplete(tb_pid);

GetPidIfNecessary will return 0 if the semaphore's count is > 0, which means that the
transaction doesn't have to wait for the semaphore to be posted (i.e. incremented). If
GetPidIfNecessary returns a non-zero number then that number represents the resume_pid
to wait for. When a tbfifosemaphore is posted, it will set the resume_pid to the next
waiter in line (if there is one). Once the wait is complete, WaitComplete is called on the
tbfifosemaphore which will decrement the count. When the transaction wants to release
the semaphore, it simply calls Post which will increment the semaphore and set the
appropriate resume_pid if necessary.

	1.The Pipelining Example
	2.Pipeline Boundary Markers
	2.1.Creating Pipeline Boundary Markers
	2.2.How Pipeline Boundary Markers Work
	2.2.1.Multiple instantiations of a single diagram
	2.2.2.Semaphores

	3.Verilog Specific Details

