
IP Reuse: A Novel VHDL to Verilog Translation Flow

Alessandro Fasan
STMicroelectronics, New Ventures Group, S.I.C.L., San Jose, CA, USA.

alessandro.fasan@st.com

Andrea Fedeli
STMicroelectronics, Central R&D, D.A.I.S., Agrate, Italy.

andrea.fedeli@st.com

Abstract

IP Reuse and customization are emerging topics in
nowadays electronic industry. This paper reports a de-
tailed description of the process to translate a 280,000
gate equivalent VHDL source (more than 60,000 lines
of code) into the corresponding Verilog without tech-
nology mapping. This translation process was per-
formed in less than three man-months using a custom
simulation environment with formal verification of de-
sign equivalence.

Keys: Language Translation, Simulation Environment,
Formal Verification.

Object description

Our target design was an embeddable MPEG-2 decoder.
We had to make it quickly, correctly, and using our cus-
tom simulation environment. What better than an IP1 reuse
program to meet this goal? We decided to collect different
blocks from divisions within our Company (fig. 1). We
took theDecode Pipelinefrom one group, theSlice Parser
from another one and theMotion Compensationfrom a
third.

The Decode pipeline, already used in real projects (i.e.:
silicon proven), was assumed to be correct. For the other
two components the debug activity had to be completed;
we also had to write the glue needed to put together all
the pieces. All block descriptions had to be synthesizable,
including the new code that we added. As any testbench
designer knows, creating a testbench requires much effort.
We were fortunate enough to have an existing testbench
which used real MPEG streams: the expected results were
known.

But we had a problem: all the IP was written in VHDL.
Some testbenches were written in Verilog, and our simu-
lation environment was strongly Verilog-based. Further-
more, most of the designers in the group had experience
in Verilog code development (writing, testing, debugging),
and few of them had knowledge of typical VHDL idiosyn-

1Actually we were building an IP using other IP’s.

Shifter Slice Parser

Decode Pipeline

Sum & StorePredict RAM

Motion Vector
Decoder

Instruct.
Exec

Merge

DMA +
Input FIFO

DMA +
FIFO

Memory BUS

Halfpel filter

MPEG-2 Decoder

Figure 1: The MPEG-2 decoder block diagram.

crasies. Last, but not least, our VHDL simulation envi-
ronment was inferior in time and flexibility performances
to the Verilog one and thus less suited for the debugging
phase of the project.

Looking for a Good Translator

A possible solution could have been to adopt a co-
simulation environment, but one of our project constraints
was to maximize the knowledge reuse in each phase, sim-
ulation included. Thus, we had to adapt the designs to our
simulation environment rather than the other way around.

Our aim was, therefore, to translate all the VHDL de-
scriptions into corresponding Verilog sources. This could
be performed in one of three ways:

1. Translate all the files by hand;

2. Pass through a synthesis step;

3. Translate the description using code translators;

Solution 1 was not viable, due to circuit dimension and
source number (the whole project involved 124 files).

As far as a combination of correctness and translation
times is concerned, solution 2 is the best; but one of our



aims was to obtain a Verilog description suitable for sim-
ulation on which we had to run a reasonable amount of
MPEG streams. By using a gate level netlist in simula-
tion we would have lost the time gained in the translation
phase, not to mention that the debugging and the design
modifications of a gate level netlist is prohibitive.

Therefore we decided to find a good translator that, by
being able to convert VHDL into Verilog without any tech-
nology mapping, let us mostly reuse our wellknown Veri-
log simulation environment.

The Search

It took us a certain amount of time (see table 1) to find a
good candidate. A translation study case, based on the Mo-
tion Compensation block, allowed us to identify the more
accurate and better-supported tool. Three candidates were
considered. The choice of the study case was determined
by the existence of a Verilog testbench and the chance to
be supported by one of the designers who worked on that
block2. After a couple of weeks spent debugging the Veri-
log RTL version of the original VHDL design, 16 of the
given 17 patterns were correctly passing. At that time
we ended the evaluation of the translators; we chose the
VHDL2Verilog from ASC3[1],[3].

Go Marching in

Next step was to work on the Decode Pipeline; the origi-
nal design, written in VHDL, contained DesignWare (DW)
components. This implied huge interventions on the trans-
lated code; pragmas had to be added manually to the gen-
erated Verilog code to maintain DesignWare directives. To
our knowledge no translator supports DW components yet.
During this phase thecomparedesigncommand of Synop-
sys’ Design Compiler was heavily used to verify the func-
tional equivalence of original VHDL and derived Verilog.

Here comes the Formal Verification

There was still a pattern in the translated block in which
the simulation was failing. Instead of debugging it in the
old fashioned way, we decided to use something innova-
tive to what we were doing: that is why we decided to try

2In fact, the Verilog testbench for a VHDL design was due to the needs
of the first customer for that IP. The team that provided us the Motion
Compensation block synthesized the VHDL design, and created a Veri-
log gate level netlist; this was used by the first customer to perform a
Verilog simulation.

3ASC is Alternative System Concepts, Inc.

Synopsys’Formality, an Equivalence Checking4 tool. We
applied Formality on the Motion Compensation block: in
just a week we found the reason why the17

th pattern used
in the regression was not passing correctly; in fact a bug in
the translation process was detected. ASC acknowledged
its translator bug, fixed it and provided us with the new
translator release in a very short time. In this first phase
we learned that Formality could help us write a synthesiz-
able (Verilog in this case) RTL code that was better than the
original (VHDL in this case): in fact we could hand mod-
ify the code where we had warnings from Design Compiler
and use Formality to prove the equivalence. As explained
further in the text,Formality uncovered other issues with
the translation.

To co-simulate or not to co-simulate?
That is (not) the question:

Just to get the idea about the effort needed to co-simulate,
we tried to co-simulate the Decode Pipeline using an en-
vironment based onLeapfrog. All the tests passed with-
out problems, but the perfomance was unacceptable for our
needs. We budgeted only one week for this activity, having
already understood that Formality was going to be the per-
fect companion to successfully complete this challenging
job.

Equivalence Checking, what else?

As mentioned above, all the blocks we had to check were
synthesizable. This was essential for the use of an Equiva-
lence Checking tool as all the current5 state-of-the-art tools
in this field are able to compare only synthesizable descrip-
tions. After the Decode Pipeline was verified, the verifi-
cations of other blocks withFormality highlighted at least
two different classes of problems that would have been dif-
ficult to detect via simple simulation:

� Signal name swaps / semantically correct typos.

� Arithmetic function translation.

Furthermore, it is important to perform the verification
at different levels in the hierarchy because in one case the
designs matched at one level but encountered problems at
a higher level. The equivalence checking phase was pre-
ceded by a simulation of the Verilog translated description
that hung. In this case we had a simulated object, quite

4That is a —relatively new—verification technique, different from
usual simulation, belonging to the field of Formal Methods; in a few
words, Equivalence Checking allows to perform exhaustive Verification
without pattern definition and simulation.

5September 1998.



large and with heavy arithmetic content, that was a for-
est of hiding places for bugs. We decided to check it bot-
tom up, taking advantage that Equivalence Checkers work
without testbenches. Thusall blocks, even those that do
not have their own testbench already set up, can be verified
with a very low preparation effort. This generally speeds
up verification especially when, as it was (by construction)
in our case, designs have the same hierarchy.

Logic Cones and Subtle Typos

A check with the Equivalence Checker revealed immedi-
ately a difference in the input set of twologic cones. To
make sure our reader feels comfortable with what we are
talking about, let us give a very brief description of the
logic cone concept. To be able to compare two designs, an
Equivalence Checking tool has to establish what has to be
compared. Normally Equivalence Checking tools take the
primary outputs and the state (or output value) of circuit
memory element (i.e.: flip-flops and latches) as compari-
sonrelevantpoints (fig. 2). Relevant points are then con-
nected to (i.e.: their value depend on) other relevant points
or to primary inputs value by globs of combinational logic
(degenerated into a wire, in the simplest case). Each rele-
vant point, as termination of its glob of combinationals, can
be seen as the vertex of a sort-of cone (of logic) whose base
collects the set of relevant points that with their state/value
determines the value of the vertex.

When two relevant points that should match show dif-
ferences between their logic cones input sets, a problem is
perhaps underlying6.

Now, in our case, some logic cones were reported to
have different sets of input; the matter was due to a small
set of typos (a manual intervention, here, was the origin of
the problem) that acted like a swap between signals when
passing from VHDL to Verilog description. The high-
lighted differences allowed us to focus our attention on a
restricted section of code where the difference happened.
Actually, that mapping had to be mediated by our circuit
knowledge, as no code back-reference7 was available. It
has to be noted then, that a more subtle set of typos, not
translating itself into a difference between logic cone input
set could have hidden the swaps. The Equivalence Check-
ing tool would have revealed a difference in functional de-
pendency of those two edges, and a little deeper investiga-
tion would have also determined the problem origin in this
case.

6This is actually a white lie: different other aspects could be taken into
account, for instance, topological similarities could be used to lessen the
differences; we think it suffices, for our exposition, to give the basic idea
here.

7That is the ability to show, on the source (VHDL, Verilog, etc.) code,
the origin of a certain difference.

FF
C

Q

D

FF
D

Q

D

FF
A

Q

D

FF
B

Q

D

CK

I2

I1

I3

Z1

Z2

Z3

relevant point input set
Z1 I1, I2
Z2 FFA(Q)
Z3 FFD(Q)
FFA I1,I2,CK
FFB I3,CK
FFC FFB(Q),CK
FFD FFA(Q),FFC(Q),CK

Figure 2: A sample circuit, with dotted logic cones for two
relevant points (FFB, FFC), and its relevant points input
set table.

Arithmetic Shifts and Sums of Signed quanti-
ties

Another cause of differences between descriptions is the
way signed arithmetic operations have to be exploited in
VHDL and in Verilog. Such a problem existed in theLIQ,
a block inside the Slice Parser, engaged in micro instruc-
tion generation for Motion Compensation Block, (cfr. fig.
1). The translator could have done more than it did, but
perhaps not much more. The translation of operators like
+ or >> had to be patched by hand especially with opera-
tions involving arrays of different length. VHDL shift right
with signed quantities were translated into unsigned Veri-
log shifts, e.g.:
PMV1 <= conv std logic vector(shr

(signed(vect),’’1’’),12)

translated into

PMV1 <= (vect >> 1’b1);

Bottom-Up verification: Asynchronous FSM
interaction and Non blocking assignments
drawbacks

The last block we had to verify (theSlice Parserin fig. 1)
was the toughest; it was quite big and with several hierar-
chy levels, and even if each sub-block correctly passed the
Equivalence Checking phase, its Verilog simulation was
stuck in an infinite loop. That loop was not present in the
VHDL simulation.

The origin of the lock was a zero-delay loop due to the
coupling of non blocking assignments in two finite state
machines, placed in different blocks. The difference be-
tween simulation behaviors, together with the validation
of functional correspondence of single blocks, pointed our



Phase Time (man/week)
Evaluation 4
Co-simulation 1
Decode Pipeline (Comparedesign) 3
Decode Pipeline (Formality) 1
LIQ 1
Slice Parser 1
Total 11

Table 1: Timetable for described operations.

attention to a difference between the event models assumed
by simulation environments, and from that to the effective
cause of the loop. Our (formal) verifications checked the
correctness of those two blocks each by itself. We did not
take into account the effects of the interaction. The so-
lution to our problem was quite simple: we just had to
substitute non blocking assignment with blocking ones (in
that case the substitution was safely applicable), but our
experience should raise a general warning: in all those
cases where blocks with feedbacks are present, an upper
level verification should be performed, to be sure that un-
expected interactions do not take place. Therefore partic-
ular attention should be put on Asynchronous Finite State
Machines interactions, as they can be, each one already by
itself, a well known race-condition source.

Conclusions

We reached our target: the translation ended successfully,
and the new design was even better than the original one,
because during the translation we found bugs in the starting
description. As summarized also in [2], this experience
taught us more than one thing:

1. VHDL to Verilog translation, without gate-level inter-
mediate mapping is feasible on quite big designs;

2. The market is NOT offering, today, a push-button
solution for HDL code translation: indeed there are
tools that help engineers accomplish this task, but
such tools have to be used with a good comprehension
of undergoing translation process issues and limits;

3. The kind of aid that an equivalence checker tool can
give isreally relevant, in time and depth of the saved
effort.

With our experience we have proven that a VHDL to Veri-
log translation flow, in view ofreal IP Reuse, is an afford-
able task.

Acknowledgments

The authors wish to thank Umberto Rossi, for his hints
on Equivalence Checking and for his precious suggestions
and continuous, widespread support. We would also like
to thank Frank Palazzolo and Karen Poelakker for their pa-
tience in correcting this paper and for the suggestions and
advices they shared with us.

A. Fasan wishes to thank Inwhan Choi for his support
during Motion Compensation Block debugging and Andy
Betts for his testbench code for the Decode Pipeline used
in the co-simulation environment and, most of all, for his
fruitful efforts in IP reuse in our Company.

References

[1] Alessandro Fasan, “A VHDL to Verilog commercial
translators survey”, STMicroelectronics internal doc-
umentation, San Jose, CA, USA, May 1998.

[2] Andrea Fedeli, “The ASCVHDL2Verilog Transla-
tor, Application notes”, STMicroelectronics internal
documentation, Agrate, Italy, July 1998.

[3] Jake Karrfalt (Alternative System Concepts, Inc.),
Thomas Oberth¨ur (SICAN GmbH); “IP Design Flow
Centers on Automatic HDL Translation”,Integrated
System Design, April 1998.


