
1

TestBencher Pro

Graphical Test Bench Generation for
VHDL, Verilog, and C++!

Today's presentation will cover TestBencher Pro, a VHDL, Verilog, and C++
test bench generator that dramatically reduces the time required to create and
maintain test benches.

One of the most time consuming tasks for users of HDL languages is coding
test benches to verify the operation of their design. In his book "Writing
Testbenches," Janick Bergeron estimates that 70% of design time is spent
verifying HDL code models and that the test bench makes up 80% of the total
HDL code generated during product development.

TestBencher Pro automates the most tedious aspects of test bench
development, allowing you to focus on the design and operation of the test
bench. This is accomplished by representing each bus transaction graphically
and then automatically generating the code for each transaction. TestBencher
makes use of the powerful features of the language that is being generated and
the engineer does not have to hand-code each transaction. When hand coding,
the designer would have to take the time to deal with the specifics of the
design (port information, monitoring system response, etc) as well as common
programming errors (race conditions, minor logic errors, and code design
problems). This removes a considerable amount of time from the test bench
design process because TestBencher manages the low-level details and
automatically generates a valid test bench.

2

1.0 TestBencher Pro Overview
• Provides specification based verification
• Generates VHDL, Verilog, and C++ bus-functional models

and test benches from graphical timing diagrams

• Resulting code is modular, easy to debug, and compatible
with all major VHDL and Verilog simulators

• Language independent timing diagrams enhance the ability
of engineers to share data across projects

• The graphical interface speeds development for both expert
and novice users, dramatically reducing the time necessary
to create and maintain test benches

TestBencher represents a radical breakthrough in the automated development
of HDL test benches. TestBencher Pro provides designers with a graphical
environment for rapidly generating system level test benches. Users draw
timing diagrams and TestBencher generates native VHDL, Verilog, and C++
code. The resulting code is modular and can be used with all major VHDL and
Verilog simulators. TestBencher Pro's graphical interface speeds up test bench
development for both expert and novice users. TestBencher generates all of the
low-level transaction code, verification code, sequence detection, error
reporting and file I/O code. The graphical representation also enhances the
ability of engineers to share data across projects, even though new engineers
might not be familiar with the details of the test bench design.

3

Specification Based Verification
Problem: Verify an SOC Model that interacts with different protocols

Solution: Use TestBencher to define the protocols, and then automatically
generate the transactors , transaction data, and logic to verify the results.

1.1 Overview

Most system-level verification problems involve the creation of bus-functional
models that imitate external devices communicating using standard and
proprietary bus protocols. Here, for example, we have an SOC design that
communicates with an SDRAM memory subsystem, PCI bus devices, and
ATM physical devices.

With TestBencher, a user describes the protocols by entering timing diagrams
that illustrate the input, output, and timing of information exchanged between
the devices. Each timing diagram describes a possible transaction that can
occur between devices supporting the protocol.

From this little bit of information, TestBencher generates a complete
verification system. Each timing diagram is converted into a transactor that
exchanges transaction data with the model under test. TestBencher also creates
a transaction generator that randomly manufactures transactions, and a
transaction manager that assigns transactions to the transactors. The generated
test bench also monitors and accumulates statistics on what transactions occur,
and then can dynamically adjusts the randomization constraints to ensure
important test cases are covered.Optionally, TestBencher can also generate a
high- level behavioral reference model of the system that can be used to
compare against the model under test, enabling automated verification of
system output.

4

Code Generation Process
Create bus-functional

models using:
• Timing Diagrams to

define reusable timing
transactions

• Top-level template
defines transaction
sequence and monitors
MUT status

1.2 Overview

TestBencher creates bus-functional models by using a combination of
graphical timing diagrams and top- level template files. The graphical timing
diagrams are used to define the reusable timing transactions like a PCI bus
read cycle or write cycle. The top- level template file defines the sequence in
which the timing transactions will be applied to the model under test. For
advanced verification systems, TestBencher can create a Transaction Manager
that can read transactions in from a file or automatically generate them based
on random constraints.

The code generation process in TestBencher is an interactive process so it is
easy to experiment with different test bench functionality. Each time a timing
diagram is saved the code for that transaction is re-generated, so you can watch
how the low-level code changes when you add a new graphical element like a
sample or a loop.

The top- level test bench controls the execution sequence and monitors the
status of each timing transaction in the project. It is also the place where the
model under test is instantiated and connected to the test bench model. The
Make TB button generates the completed test bench model and updates any
timing transactions that need it. During code generation TestBencher only
changes the code blocks that appear between the macro begin and end
statements. Any code that outside the macro blocks is preserved during code
generation.

5

Timing Diagrams Communicate
Transaction Behavior

module testbench;
...
task write(addr,data,csb2dbus);

input [7:0] addr;
input [15:0] data;
input [1:0] csb2dbus;

begin
ABUS = addr;

@(posedge CLK0) //required abus2csb setup
CSB = 1'b0;

repeat (csb2dbus) @CLK0;
DBUS = data;

@(posedge CLK0)
CSB = 1'b1;
DBUS = 'hz;
ABUS = 'hz;

end
endtask
...
endmodule

HDL Code:
• Simplest signal behavior difficult to communicate
• Code complexity greatly increases for:

• response checking code
• parallel execution blocks

Graphical Representation:
• Concisely communicates transaction behavior

1.3 Overview

Let’s take a look at the difference in readability between an HDL code
transaction and a graphical representation of a transaction. Even the simplest
signal behavior can be difficult to understand when looking at HDL code.
Here, for example, is some simple signal stimulus code without any response
checking code. It executes in a strictly sequential fashion. Take a minute and
see if you can figure out exactly what this code is doing.

Now take a look a graphical representation of this same block ofcode. Notice
how much easier it is to understand what’s happening in this representation.
This is true despite the fact that the diagram includes extra details to verify a
setup constraint within the transaction. A glance at the timing diagram
communicates the temporal relationships between the edges of the signals. By
comparison, the code segment has to be studied and possibly drawn out by
hand to figure out the temporal relationships of the signals.

For more complex transactions that contain response checking code and
parallel execution blocks, this difference between timing diagram
representations and HDL code descriptions becomes even more striking. This,
of course, shouldn’t be surprising: it’s why chip vendors put timing diagrams
in their data sheets instead of HDL code descriptions of bus transactions.

6

Sequencing Transactions
• Sequencer Process controls order

in which transactions are applied to
the MUT.

• Transactions can run sequentially
in a blocking mode or
concurrently.

• Transactions can be set to run once
or run in a continuously looping
mode

• Transaction calls are automatically
generated using a dialog interface

1.4 Overview

The sequencer process is the place in the top- level test bench that defines the
order in which the timing transactions are applied to the model under test. The
sequencer process controls and monitors the execution of the timing
transactions.

Several tasks are generated for each timing transaction, each with a different
execution mode. These tasks are then called from the sequencer process. The
task calls are placed sequentially in the order that you wish to have them
applied to the model under test.

In addition to these task calls, you can also place HDL code in the sequencer.
One example where this would be useful is if you wish to place conditions on
whether or not a timing transaction is called, or on the parameter values that
you wish to have applied.

Executing Concurrent Timing Transactions In addition to ordering the timing
transactions, the sequencer process is also used to specify the manner in which
the timing transactions are applied. Tasks can run in a continuous looping
mode or in a run once mode. Also each task can run in either a blocking or a
concurrent mode. Generally master bus cycles run once in a blocking mode
while global clocks and slave transactions run in a continuous and looping
mode.

7

Transaction Manager
Transaction Manager maintains a queue of transactions to

be executed. Accepts transactions from many sources:

• Transactions read from a file
• Other BFM models in the

verification hierarchy
• Transaction Apply calls made

by the user in the template file
• Transactions spawned by other

transactions
• Randomly generated

transactions produced by the
Transaction Generator (in DAC
release)

1.5 Overview

In addition to sequentially executing transaction calls that are placed in the
template file, TestBencher can generate a transaction manager module that
maintains a queue of transactions to be executed. Transactions can be
generated randomly, posted to the queue during simulation, or read in from a
file using the Test Reader component.

TestBencher automatically generates Transaction Manager and Test Reader
code from the transactions included in the project. Attempting to create and
maintain this type of code manually is difficult because the code changes each
time you add a new transaction type or change the number and types of
parameters for a transaction.

During simulation, the Transaction Manager maintains a queue of transactions
to be executed. The manager can randomly generate transactions to fill the
queue based on a weighted function. Transaction Diagrams can dynamically
post other transaction calls to the queue based on responses from the model
under test. Each BFM has its own transaction manager, so a top- level BFM
model can generate test sequences and post them to its child BFM transaction
managers. All calls to transactions can be specified either as relative or fixed
path, allowing any transaction to be initiated from anywhere in the test bench.

8

Transaction Monitor & Generator
Transaction Monitor and Generator work together to

accumulate statistics on what transactions occur, and
then dynamically adjust the randomization constraints
to ensure important test cases are covered. (By DAC)

1.6 Overview

The Transaction Monitor and Generator work together to accumulate statistics
on what transactions occur, and then dynamically adjust the randomization
constraints to ensure important test cases are covered. Both the types of
transactions and the input data for the transactions can be randomized. The
user can specify coverage levels required before test will finish. The
Transaction Monitor generates a coverage report for the completed test.

9

2.0 Graphical Constructs
Simple set of graphical constructs naturally express

timing and bus protocols:
• Waveforms - stimulus and expected response
• Variables - parameterize state and timing values

• Delays - parameterize time delays
• Setups & Holds - monitor stability between transitions
• Samples - verify and react to output from MUT

• Markers - model looping constructs, insert native HDL
subroutine calls, or end transaction

We have given an overview of TestBencher and gone over the basic steps
required create a test bench. Next we will talk about the graphical constructs
used to create the bus transactions. TestBencher is easy to use because we have
taken great care to keep the number of constructs down to a minimum. There
are 5 basic constructs that are used to create a transaction.

Drawn waveforms provide quick way describe the basic functionality of a
transaction. Usually the waveforms already exist in the design specifications or
data sheets of the accompanying parts, so it is a simple exercise in importing a
TDML file or redrawing a waveform specification.

State Variables allow flexible re-use of transactions by parameterizing the
states so that new values can be passed in each time the transaction executes.
For example, one use would be to provide data and address values for a write
cycle transaction.

Delays provide a mechanism to parameterize time in the same way that state
variable parameterize waveform values.

Samples provide a reactive, self-testing mechanism for checking the response
of the model under test. Samples can monitor response at a particular point or
over a time period.

Markers are used to create conditional loops for variable burst transactions,
calling native HDL subroutine calls, or ending transactions.
We will cover each of these constructs in detail in the next few slides.

10

Waveforms Provide Stimulus and
Expected Response Information

Several methods available for waveform entry:
• Graphically draw stimulus/response waveforms

• Generate waveforms using RTL-level equations
• Import from simulators: VHDL, Verilog, SPICE
• Import from logic analyzers: Agilent, Tektronix

• Import state information from spreadsheets

2.1 Graphical Constructs

State information is represented by waveforms. TestBencher Pro includes a
professional timing diagram editor that allows you to quickly draw waveforms
using the 7 graphical states or by describing the waveform using an RTL level
equation or Time Based Waveform equation.

In addition to the drawing environment, TestBencher can import waveforms
from other simulators, logic analyzers, and spreadsheets. TestBencher also
supports the Timing Diagram Markup Language, TDML. This is the standard
being adopted by semiconductor manufacturers and used in on- line data sheets.

The toolbar for the timing diagram editor is shown in this image. The first
group of buttons are used to add signal objects to the diagram. The next group
of buttons are used to add the model constructs discussed in the previous slide.
Waveforms can be drawn using the state buttons in the middle of the toolbar,
and the last set of buttons can be used to zoom the diagram view in or out.

11

Variables Parameterize State Values
• State Variables control bus states during simulation
• Variables can be read from a file like @readData.dbus[7:0]

passed into the transaction as a function parameter like $$addr
• Variables can be specified as conditional expressions including

Boolean equations that reference state variables and user-
defined data structures.

2.2 Graphical Constructs

TestBencher Pro can define a signal's value graphically by drawing the
waveform or by defining it using several types of expressions and variables.
These variables make the timing transactions reusable, because new values can
be passed into the transaction each time it is called. TestBencher allows both
state and timing variables to be parameterized.

Both the state and timing variables can either be passed into a transaction
through its transaction call or read in from a file. In the example shown, the
variable with the $$ in front indicates that it is a parameter variable that will be
passed into the transaction from the top- level test bench.The variable with the
@ symbol indicates that it is a file variable; the state value will be read in from
a file in the form of a column-based tab separated file (like a spreadsheet file).
Each time the transaction is called a new line from the file is read and the
value from the proper column is placed in the variable.

12

Delays Parameterize Time Values
• Delays can conditionally control when edges occur
• Delay values can be time or cycle-based
• Delay values can be passed in from a function call or read

in from a file

2.3 Graphical Constructs

Delay variables, like state variables, can be either passed into the transaction or
read from a file. Delays also can either be time based or cycle based. For
example you can either pass in a value that means 5 ns or 5 clock cycles
depending on how the delay is defined.

13

Samples Verify MUT Output
• Sample constructs can monitor and perform actions based

on the data sampled
• Sample can work at a single point or over a windowed area
• They can perform relative to the beginning of the

transaction or relative to another event in the diagram.

2.4 Graphical Constructs

Sample parameters generate self-testing code in the test bench. Samples are
normally used to monitor the signal values coming back from the model under
test. Samples can test a signal at a specific point or over a windowed area. Also
each of these samples can perform relative to the beginning of transaction or
relative to another event in the diagram.

Samples either function as time or cycle based constructs depend ing on how
you define the sample. For example, a relative sample could either be defined
to sample 20 ns after a particular edge or sample 2 clock cycles after the edge.

The value that the sample reads can either be exported to the top- level module
or written out to a file. This could be used, for instance, to provide an input
value for a state variable in another timing transaction or to determine if a
specific timing transaction is to be executed or not.

14

Markers used for Control &
Looping Sections of Transactions

• Specify the End of Transaction
• Create loops using for, while, and repeat loop markers
• Insert HDL code
• Useful for generating conditional burst type transactions

2.5 Graphical Constructs

Markers can be added to timing diagrams to specify specific actions to be
taken by the transaction during execution. These actions can include signifying
the end of a transaction, creating loops in the transaction, and inserting HDL
code calling a subroutine into the transaction.

In this example we show a loop in the middle of the transaction. TestBencher
Pro can generate a test bench that loops continuously over a sequence of test
vectors either forever or until a defined condition is met. These loops are set up
using three types of Time Markers:

- Loop Start: sets the beginning point for the loop and defines an exit
condition if there is one.

- Loop End: defines the ending point for the loop sequence.

- Exit Loop When: can be placed between a Loop Start and a Loop End
marker to allow a loop to be exited in mid-execution.

An End Diagram marker is also shown in this example. This sets the end of
where code will be generated for a transaction.

Note that while transaction code is completely generated when diagrams are
saved, a marker can be used to place a user-defined subroutine in the
transaction code. This is done in place of hand modifying the transaction code.

15

3.0 Advanced Features
• Hierarchical BFM Components

• Golden Reference Model

• Automatic generation of file I/O code

• Fast conversion from time- to cycle-based test benches

• External Simulation and Compiler Control

So far we have covered the basic Use Model of TestBencher and introduced
the major components that are generated for the verification system. Next, we
will mention a few of the features that make TestBencher a powerful and easy
to use environment for generating bus-functional models including:
hierarchical BFM components, Golden reference model generation, file I/O
code generation, the ability to switch between cycle and time base. And finally
the ability to control external simulators.

16

Hierarchical BFM Architecture
• TestBencher Pro uses a project file to control the

generation of a bus-functional model
• Projects can be included hierarchically in other

projects
• Multiple Instantiation of test bench components
• Multiple Port Testing supported
• Reuse test bench models as sub-components to

another test bench model

3.1 Advanced Features

TestBencher Pro uses a project file to organize the timing diagram files and
top-level template files. These project files have all the information needed to
generate an entire bus-functional model. Projects can be included
hierarchically in other projects. This allows TestBencher to support multiple
test bench component instantiation. Once a test bench has been completed the
entire bus functional model that it represents, or project component, can be
instantiated in another project.

A project that defines a bus-functional model of an SRAM, for example, could
be instantiated several times in a higher- level project that is being developed
for a microprocessor. The completed microprocessor model could then be
instantiated in a project for a video card. This is one way in which TestBencher
allows the re-use of test bench components.

Verification of devices with multiple ports can also be accomplished using
multiple test bench component instantiation. The transactions that would
connect to the ports would be instantiated as many times as needed in the
higher level test bench.

This methodology allows a large test bench to be broken into smaller, self-
contained components. Each sub-project can be modified at any time, either
stand-alone or while developing the owning project. The properties of the
project are always maintained.

17

Golden Reference Model
Golden Reference Models are high-level descriptions of

a system that are used to automate the verification of
system output

• Generates all of the stub functions for golden model
• User writes behavioral code inside stub functions
• Automatically compares MUT output against golden

reference model during simulation and reports errors

3.2 Advanced Features

TestBencher can generate C++ and Verilog golden reference models that run
in parallel with a VHDL or Verilog RTL model. Golden reference models are
high- level behavioral descriptions of a design and are used to compare against
the results of an RTL-level model during simulation. Reference models usually
model interaction between components at the transaction level (e.g. read
transaction/write transaction) instead of at the signal level.

If reference model generation is enabled in TestBencher, the transactors will
apply a time-based transaction to the MUT and an untimed function call
transaction to the reference model. At the end of each transaction, the outputs
for the MUT and the reference model are compared, and an error is logged
whenever there is a mismatch in the output.

TestBencher generates all of the stub-functions for the golden reference model,
keeping the transaction interface to the reference model the same as the HDL
level model. TestBencher uses the TestBuilder library to generate the C++
models. The user writes the behavioral C++ or Verilog code inside the stub-
functions that enables the golden reference model to emulate the RTL-level
model.

18

Automatic Generation of
File I/O Code

Test-vector spreadsheet format used for file I/O:
• Read from or Write to a “record” structure
• Import state and timing information
• Export data collected by samples
• Quickly generate tedious file I/O code using file

associations
• Easily swap between using a test-vector file or function

calls to control transaction state and timing parameters

3.3 Advanced Features

TestBencher provides a means to import and export data that is stored in a
spreadsheet like format. This allows information for a signal transaction to be
read and written from a record-like structure.

Data can be imported from a previously generated test-vector spreadsheet style
file to provide values for state and timing information. Data which has been
captured by a Sample can also be exported to this file format and used for as
stimulus to another test bench or for analysis of the test bench.

TestBencher automatically generates all the file I/O code. The user specifies
the file name and the column name for a particular variable, and TestBencher
will generate the file I/O code from that information.

19

Switching between Time-based
and Cycle-based test benches

Supports time and cycle-based test benches
• Specify a clock signal to switch to cycle based
• All signals, delays, samples, and markers have the

clocking feature
• Supports sensitivity to multiple clock edges

• positive, negative, or both clock edges

• Supports multiple clocks

3.4 Advanced Features

Timing Diagrams can be used to either express cycle based or timing based
transactions. By changing the clocking signal for the diagram components you
can change the whether or not a cycle based transaction or a time based
transaction will be generated. This makes it very quick to generate test benches
for different applications: gate- level timing tests or for large cycle-based runs.

All of the graphical constructs in the timing diagram support both cycle and
time based generation.

TestBencher Pro also supports multiple clocks and triggering on multiple clock
edges.

20

External Simulator Control
TestBencher Pro controls compilation and simulation:

• One environment for test development and design debug
• Handles simulators and compilers running on different

operating systems and remote machines
• Graphically display simulation results and log files

3.5 Advanced Features

TestBencher Pro can control external simulators through it's graphical
interface, so that compilation and simulation of the project can be handled
without having to exit TestBencher. This is particularly useful when multiple
tools are needed to compile and simulate a project. For example, if you are
using one of the new verification languages you will need a tool to compile the
test bench into either a dynamically linked library or byte code. You will also
need a VHDL or Verilog simulator and a make file containing all of the
information about your model under test and the commands to dynamically
link to the test bench library. With TestBencher, all of these details are
automatically handled for you. TestBencher stores information about both your
simulator and verification compiler and can remotely call those programs and
display the results of the simulation.

21

VHDL, Verilog, & C++
• C++ Library Support

using TestBuilder
• Constrained Random

Data Structure
Generation

• External control of
simulator and compiler

3.6 Advanced Features

TestBencher can generate pure VHDL, Verilog, and C++ bus-functional
models as well as mixed Verilog-C++ and VHDL C++ models. TestBencher
generates all of the low-level transaction code, verification code, sequence
detection, error reporting and file I/O code. Once the code gene ration is
complete, TestBencher can launch external simulators and compilers necessary
to build and simulate the design.

TestBencher uses the open source TestBuilder C++ library for all of the C++
generation. This library provides many useful test bench capabilities, including
constrained random data generation and support for complex data structures.
TestBuilder also provides an easier method for integrating C/C++ based
models into a test bench than using a PLI-based approach (C-based models are
often used as a golden reference to compare an RTL-level model against
during simulation).

22

Test Bencher Summary
• TestBencher Pro reduces the time required to create and

maintain test benches in VHDL, Verilog, and C++.
• Features include external simulator control, sequence

recognition, conditional execution, hierarchical, and multiple
instantiation of test bench projects

• TestBencher can model the most advanced verification
problems: PCI, ARM, and ATM

• Easy four-step process to create a test bench

• Timing Diagrams are a natural way to express timing
protocols.

In Summary, TestBencher Pro dramatically reduces the time required to create
and maintain test benches. The user is free to concentrate on the more
important aspects of test bench design since the most tedious aspects of code
generation are abstracted away.

Features include external simulator control, sequence recognition, conditional
execution, hierarchical, and multiple instantiation of test bench projects

TestBencher can model the most advanced verification problems: PCI, ARM,
and ATM

Using this tool, Test Benches are constructed using a quick four-step process.
The timing diagrams that are used to create the bus transactions are a natural
way to express timing protocols and are usually included in the design
specification or in data sheets of the parts surrounding the design.

