
Graphical Test Bench Generation for VHDL and Verilog

TestBencher Pro is a VHDL and Verilog test bench generator that dramatically reduces the time
required to create and maintain test benches. One of the most time consuming tasks for users of
HDL languages is coding test benches to verify the operation of their designs. In his book "Writing
Testbenches," Janick Bergeron estimates that 70% of design time is spent verifying HDL code
models and that the test bench makes up 80% of the total HDL code generated during product
development.

TestBencher Pro Design flow

TestBencher Pro
automates the most
tedious aspects of test
bench development,
allowing you to focus
on the design and
operation of the test
bench. This is
accomplished by
representing each bus
transaction graphically
and then automatically
generating the code for
each transaction.
TestBencher makes use
of the powerful features
of the language that is
being generated and the
engineer does not have

to hand-code each transaction. When hand coding, the designer would have to take the time to deal
with the specifics of the design (port information, monitoring system response, etc) as well as
common programming errors (race conditions, minor logic errors, and code design problems). This
removes a considerable amount of time from the test bench design process because TestBencher
manages the low-level details and automatically generates a valid test bench.

Communicates System-Level Design Concepts
Translating design specifications into working systems and hand coded test benches is a difficult
and error prone process. With TestBencher the translation is a natural conversion since the test bench
is created directly from the design specification timing diagrams. System-level design engineers
can create timing diagrams that describe a system's interfaces and hand them directly to the verification
engineers who will use TestBencher Pro to generate bus-functional models from the diagrams.

"I have recently purchased the TestBencher (Pro) product… I have been able to generate Verilog
code models for various peripherals connected to an ASIC under test in record time without writing
much Verilog code. I plan on using TestBencher for generating comprehensive test benches that I
had previously generated manually and were prone to many errors. I can generate the various
waveform files for the various models connected to the chip-under test with self-checking capability
(samples) using the integrated waveform drawing tool and TestBencher generates the Verilog test
bench. TestBencher is the most complete and comprehensive Verilog design tool that I have ever
used."

- George Lysy, Hewlett-Packard Company

Generates Test Benches from Timing Diagrams
TestBencher generates reactive VHDL and Verilog test benches
and bus-functional models from language-independent timing
diagrams. The generated test benches are capable of applying
different stimulus vectors depending on simulation response so
that the test bench functions as a behavioral model of the
environment in which the system being tested will operate. The
generated transaction can be either cycle-based or time-based.
TestBencher also provides features to quickly change from time-
based to cycle-based in a single step.

Transaction Based Modeling
Using the built-in timing diagram editor you can quickly model
common bus activities such as driving control signals, sampling
and verifying values from the model under test (reporting unexpected
values or transitions), waiting for handshaking signals before
completing a transaction, and aborting a transaction under a reset
condition. TestBencher timing diagrams can be used to model
synchronously clocked (cycle-based) and asynchronous transactions.
Some examples of a bus-transaction would be a PCI read or write
cycle.

Data Structures and Memory Interfaces
TestBencher Pro provides the capability of easily creating complex data structures that can be used
to supply or store state information. These data structures can represent memories, for example, or
they can be used to read from or write to a file using a spreadsheet format. By using the memory
features, data can be stored from one transaction and then used by another.
Once a data structure has been defined for a project, multiple instances of
that data structure can be created. For file-based
representations, TestBencher takes care of all the
handshaking and wraps the transaction code
around the generated file I/O code.

Edit Bus State

Source:

Radix:

Field:

Row:

<= Prev

Virtual:

packet1(packet)

hex

addr(queue)

read pointer

@packet1.addr

OK Next =>

Data Target

Data Structure:

Row:

Field Name:

sram

write pointer

data

31MSB:

Enable File Output

LSB: 0

Response Checking with Samples
Sample parameters generate self-testing code that is used to store and verify data produced by the
system being tested. A sample can be defined to trigger in a transaction at a specified time or when
a edge transition takes place. When a sample triggers, it collects data about a signal's state at that
specific time, or over a window of time (for example to check for stability or for an edge transition).
The value stored by the sample can be exported to the top-level module, output to a file, or stored
in a data structure or memory interface for further use later.

The Full_Expect sample is
triggered from the Then action
of the Simple Expect sample.

The Delayed Transition is then
triggered from the Else action
of the Full Expect sample.Delayed_Transition

Full_Expect

Simple_Expect

$$data

WRB

DATA

ACK

REQ

Pipelining Transactions
Modeling pipelined transactions is simple in TestBencher. The user is only required to indicate
where pipeline phases begin and end, using Pipeline Boundary Markers. When the transaction is
applied it will automatically be pipelined based on these Markers. Each Pipeline phase is given a
name and the namces can be shared between multiple diagrams. This allows you to model different
transaction types that are to be executed in the same pipeline.

Sequence Recognition
Sequence Recognition provides the ability to create a state machine within a timing transaction.
This state machine can be used to ensure that a specific sequence of events occurs on one or more
signals prior to the transaction proceeding. Sequence Recognition allows test benches to be designed
using a dataflow (event-driven) architecture instead of a sequential architecture.

Parameterize Both State and Timing Information
To create reusable timing transactions, TestBencher allows both state and timing variables to be
parameterized so that new values can be passed into the transaction each time it is called. State and
timing variables can be passed into a transaction through a transaction call or read in from a file
using Data Structures. The Data Structure editor makes it easy to transparently change the data
sources and targets for a testbench's transactions as needed during testbench development.

Markers used for Control and Looping
Markers can be added to timing diagrams to specify actions to be taken by the transaction during
execution. These actions can include signifying the end of a transaction, creating loops in the
transaction, waiting for a condition (or group of conditions) to become true, and inserting a call to
an HDL subroutine.

This diagram models a write transaction for an ARM master device. The pipeline nature of the
bus is represented using Pipeline Boundary Markers, where the user simply indicates the
boundaries of each pipeline phase.

Control Execution of Sequential and Concurrent Transactions
A top-level template file provides the top module of the test bench. Execution mode selections
determine whether a transaction executes once or if it loops continuously, and whether the transaction
executes sequentially or concurrently. The top-level module contains a Sequencer Process where
the transaction calls are placed. Native HDL code can also be placed in the Sequencer Process. This
enables you to place conditions on whether or not a timing transaction is called, or on the parameter
values that you wish to have applied, for example. The figure demonstrates how this feature can
be used with read and write transactions. In this case, two bus transaction timing diagrams were
created: a write cycle and a read cycle.
TestBencher automatically generated a read
transactor and a write transactor model from
these diagrams and functions that can be used
to start these transactions (Apply_Write and
Apply_Read). The functions in this case have
two parameters: the address and data values
to be used during each transaction. The
sequencer process in this example contains
several function calls added by the user to
execute the transactions sequentially.
TestBencher provides an "Insert Diagram Call"
palette that makes it easy to auto-insert
templated function calls from the list of
available functions (constructed from the list
of timing diagrams defined in the TestBencher
Project).

Native Language Code Generation
TestBencher Pro generates native VHDL or
Verilog test bench code. This allows the
generated code to be compiled with your design
files and simulated using all major VHDL and
Verilog simulators. Debugging the resulting
system is easy since the test bench is structured
into transactions and all of the generated code
uses the same language.

TestBencher Pro for SystemC
code generation is also available now!

Site:
www.syncad.com
E-mail:
sales@syncad.com
Direct:
540 953 3390
Sales:
800 804 7073
Fax:
540 953 3078
520 Prices Fork Rd. Suite C4
Blacksburg, Virginia 24060

