
VeriLogger Pro, by SynaptiCAD, is a complete design and verification environment for ASIC
and FPGA designers. It contains a new type of Verilog simulation environment that combines
all the features of a traditional Verilog simulator with the most powerful graphical test vector
generator on the planet. Model testing is so fast in VeriLogger Pro that you can perform
true bottom-up testing of every model in your design, a critical step often skipped in the
race to market. Test vectors can be imported or exported from logic analyzers, pattern
generators, and 3rd party VHDL, Verilog, and SPICE simulators for reuse. Simulation features
include waveform viewing, optimized gate-level simulation, single-step debugging, point-
and-click breakpoints, hierarchical browser for project management, and batch execution.

Complete ASIC and FPGA design Environment

In a typical design of a large ASIC, each contributing engineer can use a VeriLogger to
develop and simulate their portion of the chip. After each portion has been synthesized
and checked, the entire integrated design can be rapidly simulated and verified using
VeriLogger with its optimized gate level simulation engine activated. VeriLogger interfaces
to synthesis tools, place-and-route tools, and all vendor Verilog libraries. VeriLogger supports
design flows using Actel, Altera, Lattice, Lucent, Quicklogic, Vantis , and Xilinx devices with
full timing verification using SDF back-annotated simulation models.

Graphical Test Bench Generation
VeriLogger can automatically generate test bench code for your design models. Using the
built-in timing diagram editor, just draw the stimulus waveforms and VeriLogger will write
the test bench and simulate it with your design models. VeriLogger also includes an instant-
feedback simulation mode in which any change to the design code or the waveform stimulus
vectors results in an automatic re-simulation. This mode is especially useful for quickly
verifying the functionality of small design blocks, making it possible to perform true unit-
level testing of designs.

Cut Design Costs By A Factor of 10
If you've wanted to move up to the latest design methodologies, but have hesitated because
of the high entry costs, VeriLogger is your answer. If you've already moved to Verilog, but
haven't been able to afford to equip all the members of your team with their own simulators,
VeriLogger is your answer too. VeriLogger is 100% compatible with Verilog-XL and integrates
seamlessly into an XL environment.

Project Window
The Project Window is used to investigate the hierarchical structure of the Verilog components,
navigate source code, and set watches on signals. Each node in the tree has a context-
sensitive pop-up menu that can be opened by right clicking on the node.

Show hierarchical structure of Verilog components

View signal direction, type, state

Set watches on ports, components, and signals

Context sensitive pop-up menus

Top-level component in project shown with triple brackets

Waveform Viewing
Environment
VeriLogger's diagram
window is used to
display simulation results
and to provide a
drawing environment for
the graphical test bench
generation.

Purple signals are
simulation results

Black signals are
stimulus that drives the
simulation

Markers can be used
to hide sections of
simulation for easier
documentation

Click in timeline to
display all waveform
values at a particular
time

Go to Signal
declaration in an
editor window

Simulation Button Bar
The simulation and debugging functions in VeriLogger are accessed from the simulation button bar
located at the top of the main window. One of the unique features of VeriLogger is that it has two
simulation modes: Auto Run and Debug Run. The active simulation mode is displayed on the left
most button on the simulation button bar. In Debug Run mode, simulations are started only when
the user presses the Run or Single Step buttons (similar to a standard Verilog simulator). In Auto Run
mode the simulator will automatically run a simulation each time a waveform is drawn or changed
in the Diagram window. This mode makes it easy to quickly test small modules and do bottom-
up testing.

Stop Simulation

Single Step

Start Simulation

Debug or Auto Run

Compiling auto-generated top level module file: C:\SynaptiCAD\Examples\add4.v
Finished Phase II
Entering Phase III...
Finished Phase III
Highest level modules: syncad_top
Finding handle to syncad_top.sum
Finding handle to syncad_top.c_out
Compile Complete
.
Running...
0 Errors, 0 Warnings
Compile time = 0.00000, Load time = 0.03000, Execution time = 0.01000

Normal exit
INS Row: 8 Line: 15 Col: 1

Report - C:\SYNAPT~1\verilog.log

// VeriLogger Pro: Basic Verilog Simulation

C:\SynaptiCAD\Examples\add4.v
//***

//***
// (Tutorial 7 in SynaptiCad Series)

//** Full Adder ************************
module fulladder(sum, c_out, x, y, c_in);
output sum, c_out;
input x, y, c_in;

wire a, b, c;

xor (a, x, y);
xor (sum, a, c_in);

and (b, x, y);
and (c, a, c_in);
or (c_out, c, b);

output [3:0] sum;
output c_out;
input [3:0] x, y;
input c_in;

wire cl, c2, c3;

fulladder fa0(sum[0], c1, x[0], y[0], c_in);

INS

//** 4-Bit Adder *****************************
module FourBitAdder:sum, c_out, x, y, c_in);

endmodule

fulladder fa0(sum[0], c2, x[1], y[1], c1);
fulladder fa0(sum[0], c3, x[2], y[2], c2);

Row: 17 Line: 17 Col: 20

sum[3:0]

c_out

x[3:0]

y[3:0]

c_in

0ns 50ns 100ns 150ns 550ns 585.402

4 6 7 0

‘h1 ‘h2

‘h3 ‘h4

‘hf

‘h0

‘h1 ‘h2

‘h3 ‘h4

‘hf

‘h0

F 4 7 0

‘hf

‘h0

F

0

585.0ns 0.000ps

Add Signal
Add Clock

Add Bus
Add Spacer

Delay
Hold

Setup Sample
MarkerText

Zoom In
Zoom Out

Zoom Full
Zoom Range

INVal WHI WLO HEXVALTRILOWHIGH

Diagram - simulation1.tim*

Project Hierachy
Project - add4test.hpj*

Compiling auto-generated top level module file: C:\SynaptiCAD\untitled1Tim.v
Finished Phase II
Entering Phase III...
Finished Phase III
Highest level modules: syncad_top
Finding handle to syncad_top.sum
Finding handle to syncad_top.c_out
Compile Complete
.
Running...
0 Errors, 0 Warnings
Compile time = 0.00000, Load time = 0.03000, Execution time = 0.01000

Normal exit
INSRow: 8 Line: 15 Col: 1

Report - C:\SYNAPT~1\verilog.log
Direction Type State

C:\SynaptiCAD\Examples\add4.v

Ports

Ports

Ports
sum
c_out
x
y
c_in

Signals
a
b
c

Signals
a
b
c

fulladder

Components
fa0
fa1
fa2
fa3

Signals
c1
c2
c3

<<< FourBitAdder >>>

sum[3:0]
c_out
x[3:0]

c_in
y[3:0]

output
output
input
input
input

output
output
input
input
input

[] wire

[] wire
[] wire

wire

wire

wire
wire
wire

wire
wire
wire

wire
wire
wire
wire
wire

wire
wire
wire

fulladder
fulladder
fulladder
fulladder

Left click & drag to zoom in. Left click & drag with <CTRL> key to lock copy. Right click to zoom out. Simulation Good

0

VeriLogger Pro

Report View Options Window HelpSimulateEditorProjectLibrariesBusEditExportFile

Debug Run

Sim Dgm

S SS SSim Diagram & Project Verilog

verilog.log waveperl.log Breakpoints Errors Differences Grep add4.v

SET
ALL#1000 $stop;

Cyclize Selected Signal(s)

Hide Selected Signal(s)
Edit Selected Signal(s)
Go to Declaration

Group Bus <-> Virtual Bus
Edit Waveform Edges...

Delete Selected Signal(s)

Add Diagram to Project
Save
Save As...
Save
Save As...

Copy
Cut

Find
Find in Files...

Save
Save As
Rename
Print

Add to Project
Add/Remove Breakpoint
Open File

Jump to Line Number...
Text Slide In...
Text Slide Out...
Insert Diagram Calls...

Paste
Undo

Ctrl-C
Ctrl-X

Ctrl-F

Ctrl-S

Ctrl-P

Ctrl-O

Ctrl-G

Ctrl-V
Ctrl-Z

Copy
Cut

Ctrl-C
Ctrl-X

Add HDL File(s)...

Instantiate in TBench
Watch Component and Sub-component
Watch Component

Add Timing Diagram(s)...
Expand Item
Copy TestBencher Template File...

New Project
Open Project...
Save Project
Save Project As...

Design Flow Intergration
VeriLogger smoothly integrates into existing Verilog design flows. It also supports customization
features like a dynamic PLI interface for intergration with 3rd party tools and C / C++ based
simulation models The package includes a bundled command-line simulator for batch
execution enviroments. The command-line simulator supports de facto standard command
line options and debug commands, so there’s no relearning for experienced Verilog-XL
users. And it includes a built-in Perl interpreter for writing scripts to automate common tasks
in your design flow. With the built-in interpreter, you can even execute Perl scripts directly
from your simulation code!

Report Window
The Report window
manages several tab
windows which are
important to simulation
and debugging.

Simulation log file
contains all
information
generated by the
simulator, such as
compiler messages,
and all user-
generated messages
from $display tasks
and traces are sent
to this file.

Lists the breakpoints
in the current project

Hyper-linked list of
simulation errors

Comparison Button Bar
Graphically display the differences between compared waveforms for two timing diagrams
or any set of signals. This feature is exceptionally useful when comparing two different
simulation runs, as well as for comparing logic analyzer waveforms to a simulation run.
Supports edge tolerance settings and clocked comparisons.

Compare Signals

Move to next
difference

Editor Window
VeriLogger's editor
windows are an
integrated part of the
simulation environment. Double clicking in the Project Tree, Errors, or Breakpoints windows
will open an editor and display the relevant source code. The editor windows are also used
to display the current execution line for single-step debugging.

Display current execution line during debugging

Point and Click Break Points

Color-syntax editing

Search and Find in Files

Block Text Features

Context Sensitive Pop-up Menu

Compiling auto-generated top level module file: C:\SynaptiCAD\Examples\add4.v
Finished Phase II
Entering Phase III...
Finished Phase III
Highest level modules: syncad_top
Finding handle to syncad_top.sum
Finding handle to syncad_top.c_out
Compile Complete
.
Running...
0 Errors, 0 Warnings
Compile time = 0.00000, Load time = 0.03000, Execution time = 0.01000

Normal exit
INS Row: 8 Line: 15 Col: 1

Report - C:\SYNAPT~1\verilog.log

// VeriLogger Pro: Basic Verilog Simulation

C:\SynaptiCAD\Examples\add4.v
//***

//***
// (Tutorial 7 in SynaptiCad Series)

//** Full Adder ************************
module fulladder(sum, c_out, x, y, c_in);
output sum, c_out;
input x, y, c_in;

wire a, b, c;

xor (a, x, y);
xor (sum, a, c_in);

and (b, x, y);
and (c, a, c_in);
or (c_out, c, b);

output [3:0] sum;
output c_out;
input [3:0] x, y;
input c_in;

wire cl, c2, c3;

fulladder fa0(sum[0], c1, x[0], y[0], c_in);

INS

//** 4-Bit Adder *****************************
module FourBitAdder:sum, c_out, x, y, c_in);

endmodule

fulladder fa0(sum[0], c2, x[1], y[1], c1);
fulladder fa0(sum[0], c3, x[2], y[2], c2);

Row: 17 Line: 17 Col: 20

sum[3:0]

c_out

x[3:0]

y[3:0]

c_in

0ns 50ns 100ns 150ns 550ns 585.402

4 6 7 0

‘h1 ‘h2

‘h3 ‘h4

‘hf

‘h0

‘h1 ‘h2

‘h3 ‘h4

‘hf

‘h0

F 4 7 0

‘hf

‘h0

F

0

585.0ns 0.000ps

Add Signal
Add Clock

Add Bus
Add Spacer

Delay
Hold

Setup Sample
MarkerText

Zoom In
Zoom Out

Zoom Full
Zoom Range

INVal WHI WLO HEXVALTRILOWHIGH

Diagram - simulation1.tim*

Project Hierachy
Project - add4test.hpj*

Compiling auto-generated top level module file: C:\SynaptiCAD\untitled1Tim.v
Finished Phase II
Entering Phase III...
Finished Phase III
Highest level modules: syncad_top
Finding handle to syncad_top.sum
Finding handle to syncad_top.c_out
Compile Complete
.
Running...
0 Errors, 0 Warnings
Compile time = 0.00000, Load time = 0.03000, Execution time = 0.01000

Normal exit
INSRow: 8 Line: 15 Col: 1

Report - C:\SYNAPT~1\verilog.log
Direction Type State

C:\SynaptiCAD\Examples\add4.v

Ports

Ports

Ports
sum
c_out
x
y
c_in

Signals
a
b
c

Signals
a
b
c

fulladder

Components
fa0
fa1
fa2
fa3

Signals
c1
c2
c3

<<< FourBitAdder >>>

sum[3:0]
c_out
x[3:0]

c_in
y[3:0]

output
output
input
input
input

output
output
input
input
input

[] wire

[] wire
[] wire

wire

wire

wire
wire
wire

wire
wire
wire

wire
wire
wire
wire
wire

wire
wire
wire

fulladder
fulladder
fulladder
fulladder

Left click & drag to zoom in. Left click & drag with <CTRL> key to lock copy. Right click to zoom out. Simulation Good

0

VeriLogger Pro

Report View Options Window HelpSimulateEditorProjectLibrariesBusEditExportFile

Debug Run

Sim Dgm

S SS SSim Diagram & Project Verilog

verilog.log waveperl.log Breakpoints Errors Differences Grep add4.v

SET
ALL#1000 $stop;

Cyclize Selected Signal(s)

Hide Selected Signal(s)
Edit Selected Signal(s)
Go to Declaration

Group Bus <-> Virtual Bus
Edit Waveform Edges...

Delete Selected Signal(s)

Add Diagram to Project
Save
Save As...
Save
Save As...

Copy
Cut

Find
Find in Files...

Save
Save As
Rename
Print

Add to Project
Add/Remove Breakpoint
Open File

Jump to Line Number...
Text Slide In...
Text Slide Out...
Insert Diagram Calls...

Paste
Undo

Ctrl-C
Ctrl-X

Ctrl-F

Ctrl-S

Ctrl-P

Ctrl-O

Ctrl-G

Ctrl-V
Ctrl-Z

Copy
Cut

Ctrl-C
Ctrl-X

Add HDL File(s)...

Instantiate in TBench
Watch Component and Sub-component
Watch Component

Add Timing Diagram(s)...
Expand Item
Copy TestBencher Template File...

New Project
Open Project...
Save Project
Save Project As...

Integrating Hardware and Simulation Test Bench Development
VeriLogger Pro acts as a two way translator between simulation and hardware environments,
providing you with an integrated platform for test vector creation, analysis of results, and
detection of elusive timing problems. VeriLogger Pro reduces verification time for both
simulation models and hardware prototypes by taking advantage of the strengths offered
by each environment.

VeriLogger verifies Hardware Prototypes
VeriLogger enables you to leverage the work done during the design phase of your system
to simplify the development of a hardware test environment. VeriLogger can take waveforms
generated during simulation of Verilog test benches to create pattern generator stimulus
files, drastically reducing the time to create a prototyping environment. VeriLogger Pro can
also verify proper operation of hardware
by comparing logic analyzer data to
simulation results. Automated
comparison guarantees a rigorous check
of each data point, ensuring the
detection of “small impact” errors that
are easily missed during visual inspection
of the waveforms. Another benefit of
combining a simulation environment with
a hardware prototyping setup is the
ability to generate timing analysis
reports, to detect subtle setup and hold
timing violations in the hardware
prototype.

Hardware used to Create Verilog Test Benches
Just as design data can be transferred into the test domain to help verify hardware, the
reverse process can be applied to the design and simulation of new systems. Most designs
need to interface with existing hardware, but simulation models are frequently not available
for that hardware. Waveforms from the existing hardware can be captured with a logic
analyzer and converted to HDL test bench code or SPICE stimulus and used to test the new
system. Instead of spending weeks developing a test bench, you can capture real world
stimulus and begin testing within minutes of capturing the data. Existing hardware can also
be used to verify that a next-generation system's interface is compatible with the older
hardware.

 “ I’m impressed with SynaptiCAD, they have a great simulator at a very accessible price. I found
it to be 100% Cadence Verilog-XL compatible. My test case simulated the same RTL code from a
big FPGA (Xilinx Virtex-300/600/1000 and an Altera 10k150) in Verilog XL and in VeriLogger with
no problems. Even on a machine with only 128M of RAM, VeriLogger performed well. The SynaptiCAD
staff was very quick to answer any questions and I have always found them to be very responsive
and helpful. “

Gill Romero
Principal Consultant, ASIC Alliance Corp.

Site:
www.syncad.com
E-mail:
sales@syncad.com
Direct:
540 953 3390
Sales:
800 804 7073
Fax:
540 953 3078
520 Prices Fork Rd. Suite C4
Blacksburg, Virginia 24060

