
VME TestBencher Pro Example
© Copyright 1994-2004 SynaptiCAD, Inc.

Table of Contents
1.Overview...2
2.VME_arbiter.hpj..3

2.1.sgl_arbiter.btim..3
3.VME_master.hpj...4

3.1.requestbus.btim and releasebus.btim..4
3.2.write.btim and read.btim..4

4.VME_slave.hpj..5
4.1.write.btim...5

5.VME_requester.hpj...6
5.1.rwd_requester.btim..6

6.VME.hpj..7
6.1.Sequencer Process (in Component Model)...7

1.Overview

This example was created for VHDL and Verilog and can be found in the following
directories:

<INSTALL>\Examples\Verilog\VME
<INSTALL>\Examples\VHDL\VME

The VME example demonstrates how you would create bus-functional-models (BFMs)
for the following VME components: arbiter, master, and slave. It also demonstrates how
you might configure a set of slave BFM instances to respond to different address ranges.
Each of these BFMs are represented by a TestBencher Pro project which are all
instantiated in a project named VME.hpj. This entire example is composed of unclocked
diagrams. Here is the full project hierarchy:

VME.hpj
VME_arbiter.hpj
VME_master.hpj

VME_requester.hpj
VME_slave.hpj

Some features demonstrated in this example include:

1. Component Signals & Ports dialog -used to specify ports of each BFM.
2. Edge Sensitive Signals – used throughout most of the transactors.
3. User-defined condition Samples – master write and read transactors.
4. Project Level Variable – VME_slave “memory”.
5. Store Sampled Value to Variable – VME_slave write transactor.
6. Multiple Delay Resolution – VME_requester
7. Diagram Input Variables – VME_slave – used to configure address range.

Open VME.hpj and look at the Project window to see the hierarchy of projects. The
instantiations are displayed below the top level Component Model. You can browse the
contents of master.hpj and slave.hpj via the Project Library folder.

Throughout the diagrams in this example, names for delays, setups, and holds were
chosen based on the VME specification. Typically, the numbers used in the names match
up with the timing parameters given in the spec. Although some of the delays don't have
a corresponding timing parameter in the spec. VME also has a set of “rules” and you'll
see names that contain “Rule” in them for these.

2.VME_arbiter.hpj

There are multiple arbitration schemes supported by the VME specification. This BFM
could theoretically contain a transactor for each scheme. But, for this example it only
implements one of them and has only one transaction diagram, sgl_arbiter.btim. This is a
“Slave Transactor” and responds to requests put out on the BR3 control signal. It only
grants requests to the bus when there are no transactions in progress. Here is a detailed
sequence of what this transactor does when running.

2.1.sgl_arbiter.btim

1. WaitForRequest Sample: waits up to 50 ns for an assertion on BR3. If an assertion on
BR3 is detected, it will trigger delay D0 which will assert BG3. If the Sample times
out before BR3 asserts, then it will restart the diagram.

2. Wait for BBSY to assert. This is done by setting up BBSY as a “Falling Edge
Sensitive” signal and drawing the falling edge where the arbiter should wait.

3. D1 Delay: this is triggered by the falling edge of BBSY. It will release grant of the bus
by de-asserting BG3. This delay isn't strictly necessary since the diagram is already
waiting on the falling edge on BBSY. It was put in place to make sure that the delay
stays fixed to 10 ns when editing the diagram. It also makes clear that the delay
between BBSY and BG3 is not arbitrarily chosen.

4. Wait for BBSY to de-assert. This is done by setting up BBSY as a “Rising Edge
Sensitive” signal and drawing the rising edge where the arbiter should wait.

5. Repeat steps 1-4. This looping affect is achieved by making sgl_arbiter a “Slave
Transaction”. This setting is set when adding the diagram to the project. But, it can
also be changed by going to the “Diagram Setting” dialog.

3.VME_master.hpj

The master BFM consists of four transactors and one requester BFM instance. The
requester BFM is explained in greater detail in its own section. Essentially, the master
uses the requester to communicate with the arbiter to receive access to the VME bus. The
requester could have been implemented as part of the master BFM, but there are other
types of VME components (not used in this example) that need to request access to the
bus, so the requester behavior was encapsulated in a separate BFM.

3.1.requestbus.btim and releasebus.btim

These are the two transactors that interact with the requester BFM. The “requestbus”
transactor asserts DEVICE_WANTS_BUS, then waits for DEVICE_GRANTED_BUS to
assert. The “releasebus” transactor de-asserts DEVICE_WANTS_BUS, then waits for
DEVICE_GRANTED_BUS to de-assert.

3.2.write.btim and read.btim

These two transactors are similar, so only the write.btim will be explained in detail. The
write transactor has two input arguments: $$addr and $$data. The read transactor has
one input argument, $$addr, and one output argument, SampleData. Here is the sequence
of events for write.btim:

1. Put address on “A” bus.
2. DTACK_highcheck Sample: waits until DTACK is de-asserted. This is a level

sensitive wait. Full Expect is disabled, the multiplier is set to 1000 and Blocking is
enabled. This combination causes the transactor to wait up to 1000 ns for DTACK to
de-assert.

3. BERR_highcheck Sample: works just like the DTACK_highcheck sample, but waits
for BERR to de-assert.

4. Assert AS after a delay of D4 (10 ns).
5. Put data on “D” bus. This is done by the AS_to_DS delay.
6. Assert DS0 and DS1. This is either done by the D8 delays or D10 delays, whichever

will cause the latest transition. Double-click on the falling edge to open the “Edge
Properties” dialog. Notice that “Latest Transitions” is selected. The Multiple Delay
Resolution can be configured separately for each edge in the diagram.

7. Wait for DTACK to assert. DTACK is set up to be “Falling Edge Sensitive”.
8. Release all the control signals based on the appropriate delays.

During this diagram's execution, all of the Setup and Hold checks are running in parallel.
If any of these checks fail and error message will be output to the simulator's log file.

4.VME_slave.hpj

The slave BFM contains three transactors: gluelogic, read and write. All of these
transactors are configured to be “Slave Transactors” (set in Diagram Settings). This will
cause them all to run continuously in a looping mode when applied. The read and write
diagrams are set up to respond to VME control signals. The gluelogic diagram defines a
signal that represents DS0 “and” DS1. This signal is internal to the VME_slave project
and is used in the write and read diagrams. Only the write diagram will be explained in
detail here since the read is very similar. There is a variable named “memory” defined in
this project. The “D_tomemory” Sample in the write diagram stores values in this
variable. And this variable is used to drive the “D” bus in the read diagram.

Both the write and the read transactors have two input variables defined:
lowValidAddress and highValidAddress. These define precisely what address range to
respond to and are passed in via the transactor apply call.

4.1.write.btim

1. Wait for falling edge on AS (Address Strobe). AS is set up as “Falling Edge
Sensitive”.

2. address Sample: This sample has a user-defined condition set to “(A >=
write_args.lowValidAddress) && (A <= write_args.highValidAddress)”. This
condition makes sure that the address on “A” is in the slave's address range. If it isn't
then it will restart the diagram. To see how this is set up, double-click on the sample's
name to open the Sample Properties dialog, then click on the HDL Code button to
open the Code Generation Options dialog.

3. Wait for both DS0 and DS1 to assert. This is achieved by setting DS_and to be
“Falling Edge Sensitive.”

4. CheckForWrite Sample: Since this is the write transactor, this sample checks to make
sure that WRITE is asserted before continuing. If WRITE is de-asserted then the
Sample will restart the diagram.

5. D28 Delay: assert DTACK after 30 ns.
6. Latch data while data strobes (DS0 and DS1) are asserted. This is done by the

DS0_latch and DS1_latch signals. For example, the DS0_latch was created by setting
the following in the Signal Properties dialog:
a) Boolean Equation = D[7:0]
b) Clock = DS0
c) Edge/Level = low

7. Wait for both DS0 and DS1 to de-assert. This happens since DS_and is also a “Rising
Edge Sensitive” signal.

8. D_tomemory Sample: This stores the latched data in a variable array named
“memory”. In the Sample's Code Generation Options, “@memory[address-
write_args.lowValidAddress]” was specified in the “Store Sampled Value to Variable”
edit box. Open the Classes and Variables dialog for the VME_slave project to see
how the “memory” variable was created.

9. Release DTACK after D30 delay.

5.VME_requester.hpj

The requester BFM contains one transactor, rwd_requester. This BFM is instantiated by
the VME_master BFM and could be used by any VME BFM that needs to request access
to the bus.

5.1.rwd_requester.btim

1. Wait for assertion of DEVICE_WANTS_BUS. This signal is set as “Falling Edge
Sensitive”. The master's requestbus transactor will assert this when it needs access to
the bus.

2. Assert BR3 after delay of D0 (5 ns). This is the bus request signal that the arbiter will
respond to.

3. Wait for assertion of BG3IN, the bus grant signal. This is set as “Falling Edge
Sensitive”.

4. Assert DEVICE_GRANTED_BUS, which will is what the master is waiting for.
5. Release BR3.
6. Assert BBSY after D1 (5 ns) to indicate that the bus is busy. The arbiter will continue

to grant the master access to the bus as long as this busy signal is asserted.
7. Wait for BG3IN to de-assert. This is set as “Rising Edge Sensitive”.
8. Wait for DEVICE_WANTS_BUS to de-assert.
9. Release DEVICE_GRANTED_BUS.
10.Release BBSY. Note that there are four delays that drive this release: Rule3.9,

Rule3.7, D3, and Rule3.10 This is to ensure that all the VME rules are being honored.
The “Multiple Delay Resolution” for this edge is set to “Latest Transition”, which
means the transactor will detect (during simulation) which delay will cause the latest
transition to occur for this edge, then use that delay to drive the edge. You can edit
this setting by double-clicking on the edge itself to bring up the “Edge Properties”
dialog. Here's what each delay ensures:
a) Rule3.9 – release of BBSY must be no less than 30 ns after BG3IN is asserted.
b) Rule3.7 – release of BBSY must be no less than 90 ns after BBSY is asserted.
c) D3 – release of BBSY must not occur before DEVICE_WANTS_BUS is de-

asserted.
d) Rule3.10 – release of BBSY must not occur before BG3IN is de-asserted.

6.VME.hpj

This is where all of the BFMs are connected together. There is no Model Under Test
(MUT) in this example since it's purpose is to demonstrate how to create BFMs. Instead,
the BFMs interact with each other (i.e. when the master performs a write the slave reacts
and stores the data written to the bus). There are three slaves and four masters
instantiated along with the arbiter instantiation. The VME bus grant daisy chain is
achieved by connecting a series of slotn_BG3OUT signals to each master instance. The
actual port connection is shown in the project window. If you want to see the formal port
names, double-click on an instance to bring up the “Signals and Ports” dialog.

6.1.Sequencer Process (in Component Model)

Double-click on the Component Model in the project tree and scroll to the sequencer
process, which is located near the bottom. Here is a breakdown of what the sequencer
process does:

1. Starts up each slave with a given address range. In the VME_slave's component
model, there are two user-defined tasks: StartRunning and StopRunning. The
StartRunning task was written to take the address range as input, which then starts
each transactor in a “no-wait” mode using that address range.

2. Starts up the requester for each master.
3. Starts up the arbiter.
4. Applies the reset transactor.
5. Performs writes and reads using the different masters.
6. Performs an invalid write, which results in a logged error during simulation.
7. Stops all “Slave Transactors”: arbiter, requesters, and slaves.

	1.Overview
	2.VME_arbiter.hpj
	2.1.sgl_arbiter.btim

	3.VME_master.hpj
	3.1.requestbus.btim and releasebus.btim
	3.2.write.btim and read.btim

	4.VME_slave.hpj
	4.1.write.btim

	5.VME_requester.hpj
	5.1.rwd_requester.btim

	6.VME.hpj
	6.1.Sequencer Process (in Component Model)

